On the Proof of Fixed-Point Convergence for Plug-and-Play ADMM
In most state-of-the-art image restoration methods, the sum of a data-fidelity and a regularization term is optimized using an iterative algorithm such as ADMM (alternating direction method of multipliers). In recent years, the possibility of using denoisers for regularization has been explored in s...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2019-12, Vol.26 (12), p.1817-1821 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1821 |
---|---|
container_issue | 12 |
container_start_page | 1817 |
container_title | IEEE signal processing letters |
container_volume | 26 |
creator | Gavaskar, Ruturaj Girish Chaudhury, Kunal Narayan |
description | In most state-of-the-art image restoration methods, the sum of a data-fidelity and a regularization term is optimized using an iterative algorithm such as ADMM (alternating direction method of multipliers). In recent years, the possibility of using denoisers for regularization has been explored in several works. A popular approach is to formally replace the proximal operator within the ADMM framework with some powerful denoiser. However, since most state-of-the-art denoisers cannot be posed as a proximal operator, one cannot guarantee the convergence of these so-called plug-and-play (PnP) algorithms. In fact, the theoretical convergence of PnP algorithms is an active research topic. In this letter, we consider the result of Chan et al. (IEEE TCI, 2017), where fixed-point convergence of an ADMM-based PnP algorithm was established for a class of denoisers. We argue that the original proof is incomplete, since convergence is not analyzed for one of the three possible cases outlined in the letter. Moreover, we explain why the argument for the other cases does not apply in this case. We give a different analysis to fill this gap, which firmly establishes the original convergence theorem. |
doi_str_mv | 10.1109/LSP.2019.2950611 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8888227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8888227</ieee_id><sourcerecordid>2316629088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-65ad2436db0bfefc37ba364b975c0a0fff997ada40c0de1a1e4d30660abc4a883</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKfvgi8BnzMvSZsmL8KYmwobK6jPIU2T2TGbmXbi_nszNjwO7uC-7477IXRLYUQpqIf5WzliQNWIqRwEpWdoQPNcEsYFPU89FECUAnmJrrpuDQCSynyAHpct7j8dLmMIHqecNb-uJmVo2h5PQvvj4sq11mEfIi43uxUxbRpvzB6PnxaLa3ThzaZzN6c6RB-z6fvkhcyXz6-T8ZxYpmhPRG5qlnFRV1B55y0vKsNFVqkit2DAe69UYWqTgYXaUUNdVnMQAkxlMyMlH6L7495tDN871_V6HXaxTSc141QIlj47qOCosjF0XXReb2PzZeJeU9AHSjpR0gdK-kQpWe6OlsY59y-XKRgr-B_Mr2Gb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316629088</pqid></control><display><type>article</type><title>On the Proof of Fixed-Point Convergence for Plug-and-Play ADMM</title><source>IEEE Electronic Library (IEL)</source><creator>Gavaskar, Ruturaj Girish ; Chaudhury, Kunal Narayan</creator><creatorcontrib>Gavaskar, Ruturaj Girish ; Chaudhury, Kunal Narayan</creatorcontrib><description>In most state-of-the-art image restoration methods, the sum of a data-fidelity and a regularization term is optimized using an iterative algorithm such as ADMM (alternating direction method of multipliers). In recent years, the possibility of using denoisers for regularization has been explored in several works. A popular approach is to formally replace the proximal operator within the ADMM framework with some powerful denoiser. However, since most state-of-the-art denoisers cannot be posed as a proximal operator, one cannot guarantee the convergence of these so-called plug-and-play (PnP) algorithms. In fact, the theoretical convergence of PnP algorithms is an active research topic. In this letter, we consider the result of Chan et al. (IEEE TCI, 2017), where fixed-point convergence of an ADMM-based PnP algorithm was established for a class of denoisers. We argue that the original proof is incomplete, since convergence is not analyzed for one of the three possible cases outlined in the letter. Moreover, we explain why the argument for the other cases does not apply in this case. We give a different analysis to fill this gap, which firmly establishes the original convergence theorem.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2019.2950611</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>ADMM ; Algorithms ; conver-gence analysis ; Convergence ; Convex functions ; Image restoration ; Iterative algorithms ; Iterative methods ; Noise reduction ; Optimization ; plug-and-play ; Regularization ; Signal processing algorithms</subject><ispartof>IEEE signal processing letters, 2019-12, Vol.26 (12), p.1817-1821</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-65ad2436db0bfefc37ba364b975c0a0fff997ada40c0de1a1e4d30660abc4a883</citedby><cites>FETCH-LOGICAL-c291t-65ad2436db0bfefc37ba364b975c0a0fff997ada40c0de1a1e4d30660abc4a883</cites><orcidid>0000-0002-8136-605X ; 0000-0002-7060-3312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8888227$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8888227$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gavaskar, Ruturaj Girish</creatorcontrib><creatorcontrib>Chaudhury, Kunal Narayan</creatorcontrib><title>On the Proof of Fixed-Point Convergence for Plug-and-Play ADMM</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>In most state-of-the-art image restoration methods, the sum of a data-fidelity and a regularization term is optimized using an iterative algorithm such as ADMM (alternating direction method of multipliers). In recent years, the possibility of using denoisers for regularization has been explored in several works. A popular approach is to formally replace the proximal operator within the ADMM framework with some powerful denoiser. However, since most state-of-the-art denoisers cannot be posed as a proximal operator, one cannot guarantee the convergence of these so-called plug-and-play (PnP) algorithms. In fact, the theoretical convergence of PnP algorithms is an active research topic. In this letter, we consider the result of Chan et al. (IEEE TCI, 2017), where fixed-point convergence of an ADMM-based PnP algorithm was established for a class of denoisers. We argue that the original proof is incomplete, since convergence is not analyzed for one of the three possible cases outlined in the letter. Moreover, we explain why the argument for the other cases does not apply in this case. We give a different analysis to fill this gap, which firmly establishes the original convergence theorem.</description><subject>ADMM</subject><subject>Algorithms</subject><subject>conver-gence analysis</subject><subject>Convergence</subject><subject>Convex functions</subject><subject>Image restoration</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Noise reduction</subject><subject>Optimization</subject><subject>plug-and-play</subject><subject>Regularization</subject><subject>Signal processing algorithms</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQxoMoOKfvgi8BnzMvSZsmL8KYmwobK6jPIU2T2TGbmXbi_nszNjwO7uC-7477IXRLYUQpqIf5WzliQNWIqRwEpWdoQPNcEsYFPU89FECUAnmJrrpuDQCSynyAHpct7j8dLmMIHqecNb-uJmVo2h5PQvvj4sq11mEfIi43uxUxbRpvzB6PnxaLa3ThzaZzN6c6RB-z6fvkhcyXz6-T8ZxYpmhPRG5qlnFRV1B55y0vKsNFVqkit2DAe69UYWqTgYXaUUNdVnMQAkxlMyMlH6L7495tDN871_V6HXaxTSc141QIlj47qOCosjF0XXReb2PzZeJeU9AHSjpR0gdK-kQpWe6OlsY59y-XKRgr-B_Mr2Gb</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Gavaskar, Ruturaj Girish</creator><creator>Chaudhury, Kunal Narayan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8136-605X</orcidid><orcidid>https://orcid.org/0000-0002-7060-3312</orcidid></search><sort><creationdate>20191201</creationdate><title>On the Proof of Fixed-Point Convergence for Plug-and-Play ADMM</title><author>Gavaskar, Ruturaj Girish ; Chaudhury, Kunal Narayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-65ad2436db0bfefc37ba364b975c0a0fff997ada40c0de1a1e4d30660abc4a883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ADMM</topic><topic>Algorithms</topic><topic>conver-gence analysis</topic><topic>Convergence</topic><topic>Convex functions</topic><topic>Image restoration</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Noise reduction</topic><topic>Optimization</topic><topic>plug-and-play</topic><topic>Regularization</topic><topic>Signal processing algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gavaskar, Ruturaj Girish</creatorcontrib><creatorcontrib>Chaudhury, Kunal Narayan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gavaskar, Ruturaj Girish</au><au>Chaudhury, Kunal Narayan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Proof of Fixed-Point Convergence for Plug-and-Play ADMM</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>26</volume><issue>12</issue><spage>1817</spage><epage>1821</epage><pages>1817-1821</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>In most state-of-the-art image restoration methods, the sum of a data-fidelity and a regularization term is optimized using an iterative algorithm such as ADMM (alternating direction method of multipliers). In recent years, the possibility of using denoisers for regularization has been explored in several works. A popular approach is to formally replace the proximal operator within the ADMM framework with some powerful denoiser. However, since most state-of-the-art denoisers cannot be posed as a proximal operator, one cannot guarantee the convergence of these so-called plug-and-play (PnP) algorithms. In fact, the theoretical convergence of PnP algorithms is an active research topic. In this letter, we consider the result of Chan et al. (IEEE TCI, 2017), where fixed-point convergence of an ADMM-based PnP algorithm was established for a class of denoisers. We argue that the original proof is incomplete, since convergence is not analyzed for one of the three possible cases outlined in the letter. Moreover, we explain why the argument for the other cases does not apply in this case. We give a different analysis to fill this gap, which firmly establishes the original convergence theorem.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2019.2950611</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8136-605X</orcidid><orcidid>https://orcid.org/0000-0002-7060-3312</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2019-12, Vol.26 (12), p.1817-1821 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_ieee_primary_8888227 |
source | IEEE Electronic Library (IEL) |
subjects | ADMM Algorithms conver-gence analysis Convergence Convex functions Image restoration Iterative algorithms Iterative methods Noise reduction Optimization plug-and-play Regularization Signal processing algorithms |
title | On the Proof of Fixed-Point Convergence for Plug-and-Play ADMM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Proof%20of%20Fixed-Point%20Convergence%20for%20Plug-and-Play%20ADMM&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Gavaskar,%20Ruturaj%20Girish&rft.date=2019-12-01&rft.volume=26&rft.issue=12&rft.spage=1817&rft.epage=1821&rft.pages=1817-1821&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2019.2950611&rft_dat=%3Cproquest_RIE%3E2316629088%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316629088&rft_id=info:pmid/&rft_ieee_id=8888227&rfr_iscdi=true |