On the Proof of Fixed-Point Convergence for Plug-and-Play ADMM

In most state-of-the-art image restoration methods, the sum of a data-fidelity and a regularization term is optimized using an iterative algorithm such as ADMM (alternating direction method of multipliers). In recent years, the possibility of using denoisers for regularization has been explored in s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2019-12, Vol.26 (12), p.1817-1821
Hauptverfasser: Gavaskar, Ruturaj Girish, Chaudhury, Kunal Narayan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1821
container_issue 12
container_start_page 1817
container_title IEEE signal processing letters
container_volume 26
creator Gavaskar, Ruturaj Girish
Chaudhury, Kunal Narayan
description In most state-of-the-art image restoration methods, the sum of a data-fidelity and a regularization term is optimized using an iterative algorithm such as ADMM (alternating direction method of multipliers). In recent years, the possibility of using denoisers for regularization has been explored in several works. A popular approach is to formally replace the proximal operator within the ADMM framework with some powerful denoiser. However, since most state-of-the-art denoisers cannot be posed as a proximal operator, one cannot guarantee the convergence of these so-called plug-and-play (PnP) algorithms. In fact, the theoretical convergence of PnP algorithms is an active research topic. In this letter, we consider the result of Chan et al. (IEEE TCI, 2017), where fixed-point convergence of an ADMM-based PnP algorithm was established for a class of denoisers. We argue that the original proof is incomplete, since convergence is not analyzed for one of the three possible cases outlined in the letter. Moreover, we explain why the argument for the other cases does not apply in this case. We give a different analysis to fill this gap, which firmly establishes the original convergence theorem.
doi_str_mv 10.1109/LSP.2019.2950611
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8888227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8888227</ieee_id><sourcerecordid>2316629088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-65ad2436db0bfefc37ba364b975c0a0fff997ada40c0de1a1e4d30660abc4a883</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKfvgi8BnzMvSZsmL8KYmwobK6jPIU2T2TGbmXbi_nszNjwO7uC-7477IXRLYUQpqIf5WzliQNWIqRwEpWdoQPNcEsYFPU89FECUAnmJrrpuDQCSynyAHpct7j8dLmMIHqecNb-uJmVo2h5PQvvj4sq11mEfIi43uxUxbRpvzB6PnxaLa3ThzaZzN6c6RB-z6fvkhcyXz6-T8ZxYpmhPRG5qlnFRV1B55y0vKsNFVqkit2DAe69UYWqTgYXaUUNdVnMQAkxlMyMlH6L7495tDN871_V6HXaxTSc141QIlj47qOCosjF0XXReb2PzZeJeU9AHSjpR0gdK-kQpWe6OlsY59y-XKRgr-B_Mr2Gb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316629088</pqid></control><display><type>article</type><title>On the Proof of Fixed-Point Convergence for Plug-and-Play ADMM</title><source>IEEE Electronic Library (IEL)</source><creator>Gavaskar, Ruturaj Girish ; Chaudhury, Kunal Narayan</creator><creatorcontrib>Gavaskar, Ruturaj Girish ; Chaudhury, Kunal Narayan</creatorcontrib><description>In most state-of-the-art image restoration methods, the sum of a data-fidelity and a regularization term is optimized using an iterative algorithm such as ADMM (alternating direction method of multipliers). In recent years, the possibility of using denoisers for regularization has been explored in several works. A popular approach is to formally replace the proximal operator within the ADMM framework with some powerful denoiser. However, since most state-of-the-art denoisers cannot be posed as a proximal operator, one cannot guarantee the convergence of these so-called plug-and-play (PnP) algorithms. In fact, the theoretical convergence of PnP algorithms is an active research topic. In this letter, we consider the result of Chan et al. (IEEE TCI, 2017), where fixed-point convergence of an ADMM-based PnP algorithm was established for a class of denoisers. We argue that the original proof is incomplete, since convergence is not analyzed for one of the three possible cases outlined in the letter. Moreover, we explain why the argument for the other cases does not apply in this case. We give a different analysis to fill this gap, which firmly establishes the original convergence theorem.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2019.2950611</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>ADMM ; Algorithms ; conver-gence analysis ; Convergence ; Convex functions ; Image restoration ; Iterative algorithms ; Iterative methods ; Noise reduction ; Optimization ; plug-and-play ; Regularization ; Signal processing algorithms</subject><ispartof>IEEE signal processing letters, 2019-12, Vol.26 (12), p.1817-1821</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-65ad2436db0bfefc37ba364b975c0a0fff997ada40c0de1a1e4d30660abc4a883</citedby><cites>FETCH-LOGICAL-c291t-65ad2436db0bfefc37ba364b975c0a0fff997ada40c0de1a1e4d30660abc4a883</cites><orcidid>0000-0002-8136-605X ; 0000-0002-7060-3312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8888227$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8888227$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gavaskar, Ruturaj Girish</creatorcontrib><creatorcontrib>Chaudhury, Kunal Narayan</creatorcontrib><title>On the Proof of Fixed-Point Convergence for Plug-and-Play ADMM</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>In most state-of-the-art image restoration methods, the sum of a data-fidelity and a regularization term is optimized using an iterative algorithm such as ADMM (alternating direction method of multipliers). In recent years, the possibility of using denoisers for regularization has been explored in several works. A popular approach is to formally replace the proximal operator within the ADMM framework with some powerful denoiser. However, since most state-of-the-art denoisers cannot be posed as a proximal operator, one cannot guarantee the convergence of these so-called plug-and-play (PnP) algorithms. In fact, the theoretical convergence of PnP algorithms is an active research topic. In this letter, we consider the result of Chan et al. (IEEE TCI, 2017), where fixed-point convergence of an ADMM-based PnP algorithm was established for a class of denoisers. We argue that the original proof is incomplete, since convergence is not analyzed for one of the three possible cases outlined in the letter. Moreover, we explain why the argument for the other cases does not apply in this case. We give a different analysis to fill this gap, which firmly establishes the original convergence theorem.</description><subject>ADMM</subject><subject>Algorithms</subject><subject>conver-gence analysis</subject><subject>Convergence</subject><subject>Convex functions</subject><subject>Image restoration</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Noise reduction</subject><subject>Optimization</subject><subject>plug-and-play</subject><subject>Regularization</subject><subject>Signal processing algorithms</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQxoMoOKfvgi8BnzMvSZsmL8KYmwobK6jPIU2T2TGbmXbi_nszNjwO7uC-7477IXRLYUQpqIf5WzliQNWIqRwEpWdoQPNcEsYFPU89FECUAnmJrrpuDQCSynyAHpct7j8dLmMIHqecNb-uJmVo2h5PQvvj4sq11mEfIi43uxUxbRpvzB6PnxaLa3ThzaZzN6c6RB-z6fvkhcyXz6-T8ZxYpmhPRG5qlnFRV1B55y0vKsNFVqkit2DAe69UYWqTgYXaUUNdVnMQAkxlMyMlH6L7495tDN871_V6HXaxTSc141QIlj47qOCosjF0XXReb2PzZeJeU9AHSjpR0gdK-kQpWe6OlsY59y-XKRgr-B_Mr2Gb</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Gavaskar, Ruturaj Girish</creator><creator>Chaudhury, Kunal Narayan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8136-605X</orcidid><orcidid>https://orcid.org/0000-0002-7060-3312</orcidid></search><sort><creationdate>20191201</creationdate><title>On the Proof of Fixed-Point Convergence for Plug-and-Play ADMM</title><author>Gavaskar, Ruturaj Girish ; Chaudhury, Kunal Narayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-65ad2436db0bfefc37ba364b975c0a0fff997ada40c0de1a1e4d30660abc4a883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ADMM</topic><topic>Algorithms</topic><topic>conver-gence analysis</topic><topic>Convergence</topic><topic>Convex functions</topic><topic>Image restoration</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Noise reduction</topic><topic>Optimization</topic><topic>plug-and-play</topic><topic>Regularization</topic><topic>Signal processing algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gavaskar, Ruturaj Girish</creatorcontrib><creatorcontrib>Chaudhury, Kunal Narayan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gavaskar, Ruturaj Girish</au><au>Chaudhury, Kunal Narayan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Proof of Fixed-Point Convergence for Plug-and-Play ADMM</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>26</volume><issue>12</issue><spage>1817</spage><epage>1821</epage><pages>1817-1821</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>In most state-of-the-art image restoration methods, the sum of a data-fidelity and a regularization term is optimized using an iterative algorithm such as ADMM (alternating direction method of multipliers). In recent years, the possibility of using denoisers for regularization has been explored in several works. A popular approach is to formally replace the proximal operator within the ADMM framework with some powerful denoiser. However, since most state-of-the-art denoisers cannot be posed as a proximal operator, one cannot guarantee the convergence of these so-called plug-and-play (PnP) algorithms. In fact, the theoretical convergence of PnP algorithms is an active research topic. In this letter, we consider the result of Chan et al. (IEEE TCI, 2017), where fixed-point convergence of an ADMM-based PnP algorithm was established for a class of denoisers. We argue that the original proof is incomplete, since convergence is not analyzed for one of the three possible cases outlined in the letter. Moreover, we explain why the argument for the other cases does not apply in this case. We give a different analysis to fill this gap, which firmly establishes the original convergence theorem.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2019.2950611</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8136-605X</orcidid><orcidid>https://orcid.org/0000-0002-7060-3312</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2019-12, Vol.26 (12), p.1817-1821
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_8888227
source IEEE Electronic Library (IEL)
subjects ADMM
Algorithms
conver-gence analysis
Convergence
Convex functions
Image restoration
Iterative algorithms
Iterative methods
Noise reduction
Optimization
plug-and-play
Regularization
Signal processing algorithms
title On the Proof of Fixed-Point Convergence for Plug-and-Play ADMM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Proof%20of%20Fixed-Point%20Convergence%20for%20Plug-and-Play%20ADMM&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Gavaskar,%20Ruturaj%20Girish&rft.date=2019-12-01&rft.volume=26&rft.issue=12&rft.spage=1817&rft.epage=1821&rft.pages=1817-1821&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2019.2950611&rft_dat=%3Cproquest_RIE%3E2316629088%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316629088&rft_id=info:pmid/&rft_ieee_id=8888227&rfr_iscdi=true