A modified Hopfield neural network algorithm for cellular radio channel assignment

Since the frequency spectrum of the mobile radio communications is limited, the channel assignment problem deserves more attention in order to use the available frequency spectrum with optimum efficiency. A new channel assignment algorithm using a modified Hopfield neural network was proposed by Kim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: El-Fishawy, N.A., Hadhood, M.M., Elnoubi, S., El-Sersy, W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216 vol.2
container_issue
container_start_page 213
container_title
container_volume 2
creator El-Fishawy, N.A.
Hadhood, M.M.
Elnoubi, S.
El-Sersy, W.
description Since the frequency spectrum of the mobile radio communications is limited, the channel assignment problem deserves more attention in order to use the available frequency spectrum with optimum efficiency. A new channel assignment algorithm using a modified Hopfield neural network was proposed by Kim and Nasrabadi (see IEEE Trans. on Vehicular Technology, vol.46, no.4, p.957-67, 1997). In this paper, we propose various initialization techniques based on multilevel rearrangement of the channels before applying the algorithm of Kim et al. to decrease the number of iteration and improve the convergence rate. These techniques will guarantee that the neural network will skip the local minimum, and in all cases will converge to optimum arrangement of the channels. The specific characteristics of the channel assignment problem in cellular radio network such as co-site constraints, adjacent channel constraints, and co-channel constraints are considered with the implementation of the preassignment techniques. The results of the proposed techniques are compared with other prior reported techniques for the same eight benchmark problems. The comparison shows the merits of the proposed initialization techniques.
doi_str_mv 10.1109/TENCON.2000.888735
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_888735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>888735</ieee_id><sourcerecordid>888735</sourcerecordid><originalsourceid>FETCH-ieee_primary_8887353</originalsourceid><addsrcrecordid>eNp9zrsKwjAUgOGACF5foNN5AeupITaOUhQnBekuwZ7aaC6StIhvb0Fnp2_4l5-xJMM0y3CzLHfH4nRMV4iYSilzLgZsgrlEvuZCyBGbx3jvIwrMcYNjdt6C9ZWuNVVw8M9eU4GjLijT0758eIAyNx9021iofYArGdMZFSCoSnu4Nso5MqBi1DdnybUzNqyViTT_OWXJflcWh4UmosszaKvC-_K943_jB2DWP_k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A modified Hopfield neural network algorithm for cellular radio channel assignment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>El-Fishawy, N.A. ; Hadhood, M.M. ; Elnoubi, S. ; El-Sersy, W.</creator><creatorcontrib>El-Fishawy, N.A. ; Hadhood, M.M. ; Elnoubi, S. ; El-Sersy, W.</creatorcontrib><description>Since the frequency spectrum of the mobile radio communications is limited, the channel assignment problem deserves more attention in order to use the available frequency spectrum with optimum efficiency. A new channel assignment algorithm using a modified Hopfield neural network was proposed by Kim and Nasrabadi (see IEEE Trans. on Vehicular Technology, vol.46, no.4, p.957-67, 1997). In this paper, we propose various initialization techniques based on multilevel rearrangement of the channels before applying the algorithm of Kim et al. to decrease the number of iteration and improve the convergence rate. These techniques will guarantee that the neural network will skip the local minimum, and in all cases will converge to optimum arrangement of the channels. The specific characteristics of the channel assignment problem in cellular radio network such as co-site constraints, adjacent channel constraints, and co-channel constraints are considered with the implementation of the preassignment techniques. The results of the proposed techniques are compared with other prior reported techniques for the same eight benchmark problems. The comparison shows the merits of the proposed initialization techniques.</description><identifier>ISBN: 0780363558</identifier><identifier>ISBN: 9780780363557</identifier><identifier>DOI: 10.1109/TENCON.2000.888735</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Frequency domain analysis ; Hopfield neural networks ; Land mobile radio ; Land mobile radio cellular systems ; Mobile communication ; Neural networks ; Parallel algorithms ; Symmetric matrices ; Telephony</subject><ispartof>2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119), 2000, Vol.2, p.213-216 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/888735$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/888735$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>El-Fishawy, N.A.</creatorcontrib><creatorcontrib>Hadhood, M.M.</creatorcontrib><creatorcontrib>Elnoubi, S.</creatorcontrib><creatorcontrib>El-Sersy, W.</creatorcontrib><title>A modified Hopfield neural network algorithm for cellular radio channel assignment</title><title>2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119)</title><addtitle>TENCON</addtitle><description>Since the frequency spectrum of the mobile radio communications is limited, the channel assignment problem deserves more attention in order to use the available frequency spectrum with optimum efficiency. A new channel assignment algorithm using a modified Hopfield neural network was proposed by Kim and Nasrabadi (see IEEE Trans. on Vehicular Technology, vol.46, no.4, p.957-67, 1997). In this paper, we propose various initialization techniques based on multilevel rearrangement of the channels before applying the algorithm of Kim et al. to decrease the number of iteration and improve the convergence rate. These techniques will guarantee that the neural network will skip the local minimum, and in all cases will converge to optimum arrangement of the channels. The specific characteristics of the channel assignment problem in cellular radio network such as co-site constraints, adjacent channel constraints, and co-channel constraints are considered with the implementation of the preassignment techniques. The results of the proposed techniques are compared with other prior reported techniques for the same eight benchmark problems. The comparison shows the merits of the proposed initialization techniques.</description><subject>Convergence</subject><subject>Frequency domain analysis</subject><subject>Hopfield neural networks</subject><subject>Land mobile radio</subject><subject>Land mobile radio cellular systems</subject><subject>Mobile communication</subject><subject>Neural networks</subject><subject>Parallel algorithms</subject><subject>Symmetric matrices</subject><subject>Telephony</subject><isbn>0780363558</isbn><isbn>9780780363557</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9zrsKwjAUgOGACF5foNN5AeupITaOUhQnBekuwZ7aaC6StIhvb0Fnp2_4l5-xJMM0y3CzLHfH4nRMV4iYSilzLgZsgrlEvuZCyBGbx3jvIwrMcYNjdt6C9ZWuNVVw8M9eU4GjLijT0758eIAyNx9021iofYArGdMZFSCoSnu4Nso5MqBi1DdnybUzNqyViTT_OWXJflcWh4UmosszaKvC-_K943_jB2DWP_k</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>El-Fishawy, N.A.</creator><creator>Hadhood, M.M.</creator><creator>Elnoubi, S.</creator><creator>El-Sersy, W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>A modified Hopfield neural network algorithm for cellular radio channel assignment</title><author>El-Fishawy, N.A. ; Hadhood, M.M. ; Elnoubi, S. ; El-Sersy, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_8887353</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Convergence</topic><topic>Frequency domain analysis</topic><topic>Hopfield neural networks</topic><topic>Land mobile radio</topic><topic>Land mobile radio cellular systems</topic><topic>Mobile communication</topic><topic>Neural networks</topic><topic>Parallel algorithms</topic><topic>Symmetric matrices</topic><topic>Telephony</topic><toplevel>online_resources</toplevel><creatorcontrib>El-Fishawy, N.A.</creatorcontrib><creatorcontrib>Hadhood, M.M.</creatorcontrib><creatorcontrib>Elnoubi, S.</creatorcontrib><creatorcontrib>El-Sersy, W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>El-Fishawy, N.A.</au><au>Hadhood, M.M.</au><au>Elnoubi, S.</au><au>El-Sersy, W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A modified Hopfield neural network algorithm for cellular radio channel assignment</atitle><btitle>2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119)</btitle><stitle>TENCON</stitle><date>2000</date><risdate>2000</risdate><volume>2</volume><spage>213</spage><epage>216 vol.2</epage><pages>213-216 vol.2</pages><isbn>0780363558</isbn><isbn>9780780363557</isbn><abstract>Since the frequency spectrum of the mobile radio communications is limited, the channel assignment problem deserves more attention in order to use the available frequency spectrum with optimum efficiency. A new channel assignment algorithm using a modified Hopfield neural network was proposed by Kim and Nasrabadi (see IEEE Trans. on Vehicular Technology, vol.46, no.4, p.957-67, 1997). In this paper, we propose various initialization techniques based on multilevel rearrangement of the channels before applying the algorithm of Kim et al. to decrease the number of iteration and improve the convergence rate. These techniques will guarantee that the neural network will skip the local minimum, and in all cases will converge to optimum arrangement of the channels. The specific characteristics of the channel assignment problem in cellular radio network such as co-site constraints, adjacent channel constraints, and co-channel constraints are considered with the implementation of the preassignment techniques. The results of the proposed techniques are compared with other prior reported techniques for the same eight benchmark problems. The comparison shows the merits of the proposed initialization techniques.</abstract><pub>IEEE</pub><doi>10.1109/TENCON.2000.888735</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780363558
ispartof 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119), 2000, Vol.2, p.213-216 vol.2
issn
language eng
recordid cdi_ieee_primary_888735
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Convergence
Frequency domain analysis
Hopfield neural networks
Land mobile radio
Land mobile radio cellular systems
Mobile communication
Neural networks
Parallel algorithms
Symmetric matrices
Telephony
title A modified Hopfield neural network algorithm for cellular radio channel assignment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A54%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20modified%20Hopfield%20neural%20network%20algorithm%20for%20cellular%20radio%20channel%20assignment&rft.btitle=2000%20TENCON%20Proceedings.%20Intelligent%20Systems%20and%20Technologies%20for%20the%20New%20Millennium%20(Cat.%20No.00CH37119)&rft.au=El-Fishawy,%20N.A.&rft.date=2000&rft.volume=2&rft.spage=213&rft.epage=216%20vol.2&rft.pages=213-216%20vol.2&rft.isbn=0780363558&rft.isbn_list=9780780363557&rft_id=info:doi/10.1109/TENCON.2000.888735&rft_dat=%3Cieee_6IE%3E888735%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=888735&rfr_iscdi=true