Extracting and Generating PV Soiling Profiles for Analysis, Forecasting, and Cleaning Optimization
The identification and prediction of the daily soiling profiles of a photovoltaic site is essential to plan the optimal cleaning schedule. In this article, we analyze and propose various methods to extract and generate photovoltaic soiling profiles, in order to improve the analysis and the forecast...
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2020-01, Vol.10 (1), p.197-205 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | 1 |
container_start_page | 197 |
container_title | IEEE journal of photovoltaics |
container_volume | 10 |
creator | Micheli, Leonardo Fernandez, Eduardo F. Muller, Matthew Almonacid, Florencia |
description | The identification and prediction of the daily soiling profiles of a photovoltaic site is essential to plan the optimal cleaning schedule. In this article, we analyze and propose various methods to extract and generate photovoltaic soiling profiles, in order to improve the analysis and the forecast of the losses. New soiling rate extraction methods are proposed to reflect the seasonal variability of the soiling rates and, for this reason, are found to identify the most convenient cleaning day with the highest accuracy for the investigated sites. Also, we present an approach that could be used to predict future soiling losses through the implementation of stochastic weather generation algorithms whose ability to identify in advance the best cleaning schedule is also successfully tested. The methods presented in this article can optimize the operation and maintenance schedule and could make it possible, in the future, to predict soiling losses through analysis based only on environmental parameters, such as rainfall and particulate matter, without the need of long-term soiling data. |
doi_str_mv | 10.1109/JPHOTOV.2019.2943706 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8880477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8880477</ieee_id><sourcerecordid>2330025802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-c66cec479dad5778a0031fee52879009b3b8a1ba26f23f6ec6c06de76e97eea93</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhjdGEwnyC_Sw0SvgtN1tt0dC-NCQQCJybUqZ1ZJli-2SiL_eXUDnMtPkeSbTN4oeCPQJAfn8upjOl_NVnwKRfSoTJoBfRS1KUt5jCbDrv5ll5DbqhLCFujiknCetaD36rrw2lS0_Yl1u4gmW6PXpuVjFb84Wp9G73BYY4tz5eFDq4hhs6MZj59Ho0NDdkz0sUJeNMN9Xdmd_6kWuvItucl0E7Fx6O3ofj5bDaW82n7wMB7OeYYJWPcO5QZMIudGbVIhMAzCSI6Y0ExJArtk602StKc8pyzkaboBvUHCUAlFL1o4ez3tdfZEKxlZoPo0rSzSVIqlkIKGGns7Q3ruvA4ZKbd3B1z8KijIGQNMMaE0lZ8p4F4LHXO293Wl_VARUk7q6pK6a1NUl9Vq7P2sWEf-VLMsgEYL9AqkLfp0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330025802</pqid></control><display><type>article</type><title>Extracting and Generating PV Soiling Profiles for Analysis, Forecasting, and Cleaning Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Micheli, Leonardo ; Fernandez, Eduardo F. ; Muller, Matthew ; Almonacid, Florencia</creator><creatorcontrib>Micheli, Leonardo ; Fernandez, Eduardo F. ; Muller, Matthew ; Almonacid, Florencia ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>The identification and prediction of the daily soiling profiles of a photovoltaic site is essential to plan the optimal cleaning schedule. In this article, we analyze and propose various methods to extract and generate photovoltaic soiling profiles, in order to improve the analysis and the forecast of the losses. New soiling rate extraction methods are proposed to reflect the seasonal variability of the soiling rates and, for this reason, are found to identify the most convenient cleaning day with the highest accuracy for the investigated sites. Also, we present an approach that could be used to predict future soiling losses through the implementation of stochastic weather generation algorithms whose ability to identify in advance the best cleaning schedule is also successfully tested. The methods presented in this article can optimize the operation and maintenance schedule and could make it possible, in the future, to predict soiling losses through analysis based only on environmental parameters, such as rainfall and particulate matter, without the need of long-term soiling data.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2019.2943706</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cleaning ; Data mining ; Field performance ; Maintenance management ; Optimization ; OTHER INSTRUMENTATION ; photovoltaic (PV) systems ; Photovoltaic cells ; Photovoltaic systems ; prediction methods ; Rain ; Rainfall ; Schedules ; Seasonal variations ; Soil measurements ; soiling ; SOLAR ENERGY ; stochastic processes ; time series analysis ; Weather</subject><ispartof>IEEE journal of photovoltaics, 2020-01, Vol.10 (1), p.197-205</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-c66cec479dad5778a0031fee52879009b3b8a1ba26f23f6ec6c06de76e97eea93</citedby><cites>FETCH-LOGICAL-c372t-c66cec479dad5778a0031fee52879009b3b8a1ba26f23f6ec6c06de76e97eea93</cites><orcidid>0000-0001-7986-7560 ; 0000-0001-7352-2377 ; 0000-0001-7934-9755 ; 0000000173522377 ; 0000000179349755 ; 0000000179867560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8880477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8880477$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1593090$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Micheli, Leonardo</creatorcontrib><creatorcontrib>Fernandez, Eduardo F.</creatorcontrib><creatorcontrib>Muller, Matthew</creatorcontrib><creatorcontrib>Almonacid, Florencia</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Extracting and Generating PV Soiling Profiles for Analysis, Forecasting, and Cleaning Optimization</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>The identification and prediction of the daily soiling profiles of a photovoltaic site is essential to plan the optimal cleaning schedule. In this article, we analyze and propose various methods to extract and generate photovoltaic soiling profiles, in order to improve the analysis and the forecast of the losses. New soiling rate extraction methods are proposed to reflect the seasonal variability of the soiling rates and, for this reason, are found to identify the most convenient cleaning day with the highest accuracy for the investigated sites. Also, we present an approach that could be used to predict future soiling losses through the implementation of stochastic weather generation algorithms whose ability to identify in advance the best cleaning schedule is also successfully tested. The methods presented in this article can optimize the operation and maintenance schedule and could make it possible, in the future, to predict soiling losses through analysis based only on environmental parameters, such as rainfall and particulate matter, without the need of long-term soiling data.</description><subject>Algorithms</subject><subject>Cleaning</subject><subject>Data mining</subject><subject>Field performance</subject><subject>Maintenance management</subject><subject>Optimization</subject><subject>OTHER INSTRUMENTATION</subject><subject>photovoltaic (PV) systems</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>prediction methods</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Schedules</subject><subject>Seasonal variations</subject><subject>Soil measurements</subject><subject>soiling</subject><subject>SOLAR ENERGY</subject><subject>stochastic processes</subject><subject>time series analysis</subject><subject>Weather</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhjdGEwnyC_Sw0SvgtN1tt0dC-NCQQCJybUqZ1ZJli-2SiL_eXUDnMtPkeSbTN4oeCPQJAfn8upjOl_NVnwKRfSoTJoBfRS1KUt5jCbDrv5ll5DbqhLCFujiknCetaD36rrw2lS0_Yl1u4gmW6PXpuVjFb84Wp9G73BYY4tz5eFDq4hhs6MZj59Ho0NDdkz0sUJeNMN9Xdmd_6kWuvItucl0E7Fx6O3ofj5bDaW82n7wMB7OeYYJWPcO5QZMIudGbVIhMAzCSI6Y0ExJArtk602StKc8pyzkaboBvUHCUAlFL1o4ez3tdfZEKxlZoPo0rSzSVIqlkIKGGns7Q3ruvA4ZKbd3B1z8KijIGQNMMaE0lZ8p4F4LHXO293Wl_VARUk7q6pK6a1NUl9Vq7P2sWEf-VLMsgEYL9AqkLfp0</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Micheli, Leonardo</creator><creator>Fernandez, Eduardo F.</creator><creator>Muller, Matthew</creator><creator>Almonacid, Florencia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7986-7560</orcidid><orcidid>https://orcid.org/0000-0001-7352-2377</orcidid><orcidid>https://orcid.org/0000-0001-7934-9755</orcidid><orcidid>https://orcid.org/0000000173522377</orcidid><orcidid>https://orcid.org/0000000179349755</orcidid><orcidid>https://orcid.org/0000000179867560</orcidid></search><sort><creationdate>20200101</creationdate><title>Extracting and Generating PV Soiling Profiles for Analysis, Forecasting, and Cleaning Optimization</title><author>Micheli, Leonardo ; Fernandez, Eduardo F. ; Muller, Matthew ; Almonacid, Florencia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-c66cec479dad5778a0031fee52879009b3b8a1ba26f23f6ec6c06de76e97eea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cleaning</topic><topic>Data mining</topic><topic>Field performance</topic><topic>Maintenance management</topic><topic>Optimization</topic><topic>OTHER INSTRUMENTATION</topic><topic>photovoltaic (PV) systems</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>prediction methods</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Schedules</topic><topic>Seasonal variations</topic><topic>Soil measurements</topic><topic>soiling</topic><topic>SOLAR ENERGY</topic><topic>stochastic processes</topic><topic>time series analysis</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Micheli, Leonardo</creatorcontrib><creatorcontrib>Fernandez, Eduardo F.</creatorcontrib><creatorcontrib>Muller, Matthew</creatorcontrib><creatorcontrib>Almonacid, Florencia</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Micheli, Leonardo</au><au>Fernandez, Eduardo F.</au><au>Muller, Matthew</au><au>Almonacid, Florencia</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting and Generating PV Soiling Profiles for Analysis, Forecasting, and Cleaning Optimization</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>197</spage><epage>205</epage><pages>197-205</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>The identification and prediction of the daily soiling profiles of a photovoltaic site is essential to plan the optimal cleaning schedule. In this article, we analyze and propose various methods to extract and generate photovoltaic soiling profiles, in order to improve the analysis and the forecast of the losses. New soiling rate extraction methods are proposed to reflect the seasonal variability of the soiling rates and, for this reason, are found to identify the most convenient cleaning day with the highest accuracy for the investigated sites. Also, we present an approach that could be used to predict future soiling losses through the implementation of stochastic weather generation algorithms whose ability to identify in advance the best cleaning schedule is also successfully tested. The methods presented in this article can optimize the operation and maintenance schedule and could make it possible, in the future, to predict soiling losses through analysis based only on environmental parameters, such as rainfall and particulate matter, without the need of long-term soiling data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2019.2943706</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7986-7560</orcidid><orcidid>https://orcid.org/0000-0001-7352-2377</orcidid><orcidid>https://orcid.org/0000-0001-7934-9755</orcidid><orcidid>https://orcid.org/0000000173522377</orcidid><orcidid>https://orcid.org/0000000179349755</orcidid><orcidid>https://orcid.org/0000000179867560</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2020-01, Vol.10 (1), p.197-205 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_ieee_primary_8880477 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Cleaning Data mining Field performance Maintenance management Optimization OTHER INSTRUMENTATION photovoltaic (PV) systems Photovoltaic cells Photovoltaic systems prediction methods Rain Rainfall Schedules Seasonal variations Soil measurements soiling SOLAR ENERGY stochastic processes time series analysis Weather |
title | Extracting and Generating PV Soiling Profiles for Analysis, Forecasting, and Cleaning Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20and%20Generating%20PV%20Soiling%20Profiles%20for%20Analysis,%20Forecasting,%20and%20Cleaning%20Optimization&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Micheli,%20Leonardo&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2020-01-01&rft.volume=10&rft.issue=1&rft.spage=197&rft.epage=205&rft.pages=197-205&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2019.2943706&rft_dat=%3Cproquest_RIE%3E2330025802%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330025802&rft_id=info:pmid/&rft_ieee_id=8880477&rfr_iscdi=true |