Extracting and Generating PV Soiling Profiles for Analysis, Forecasting, and Cleaning Optimization

The identification and prediction of the daily soiling profiles of a photovoltaic site is essential to plan the optimal cleaning schedule. In this article, we analyze and propose various methods to extract and generate photovoltaic soiling profiles, in order to improve the analysis and the forecast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2020-01, Vol.10 (1), p.197-205
Hauptverfasser: Micheli, Leonardo, Fernandez, Eduardo F., Muller, Matthew, Almonacid, Florencia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 205
container_issue 1
container_start_page 197
container_title IEEE journal of photovoltaics
container_volume 10
creator Micheli, Leonardo
Fernandez, Eduardo F.
Muller, Matthew
Almonacid, Florencia
description The identification and prediction of the daily soiling profiles of a photovoltaic site is essential to plan the optimal cleaning schedule. In this article, we analyze and propose various methods to extract and generate photovoltaic soiling profiles, in order to improve the analysis and the forecast of the losses. New soiling rate extraction methods are proposed to reflect the seasonal variability of the soiling rates and, for this reason, are found to identify the most convenient cleaning day with the highest accuracy for the investigated sites. Also, we present an approach that could be used to predict future soiling losses through the implementation of stochastic weather generation algorithms whose ability to identify in advance the best cleaning schedule is also successfully tested. The methods presented in this article can optimize the operation and maintenance schedule and could make it possible, in the future, to predict soiling losses through analysis based only on environmental parameters, such as rainfall and particulate matter, without the need of long-term soiling data.
doi_str_mv 10.1109/JPHOTOV.2019.2943706
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8880477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8880477</ieee_id><sourcerecordid>2330025802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-c66cec479dad5778a0031fee52879009b3b8a1ba26f23f6ec6c06de76e97eea93</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhjdGEwnyC_Sw0SvgtN1tt0dC-NCQQCJybUqZ1ZJli-2SiL_eXUDnMtPkeSbTN4oeCPQJAfn8upjOl_NVnwKRfSoTJoBfRS1KUt5jCbDrv5ll5DbqhLCFujiknCetaD36rrw2lS0_Yl1u4gmW6PXpuVjFb84Wp9G73BYY4tz5eFDq4hhs6MZj59Ho0NDdkz0sUJeNMN9Xdmd_6kWuvItucl0E7Fx6O3ofj5bDaW82n7wMB7OeYYJWPcO5QZMIudGbVIhMAzCSI6Y0ExJArtk602StKc8pyzkaboBvUHCUAlFL1o4ez3tdfZEKxlZoPo0rSzSVIqlkIKGGns7Q3ruvA4ZKbd3B1z8KijIGQNMMaE0lZ8p4F4LHXO293Wl_VARUk7q6pK6a1NUl9Vq7P2sWEf-VLMsgEYL9AqkLfp0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330025802</pqid></control><display><type>article</type><title>Extracting and Generating PV Soiling Profiles for Analysis, Forecasting, and Cleaning Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Micheli, Leonardo ; Fernandez, Eduardo F. ; Muller, Matthew ; Almonacid, Florencia</creator><creatorcontrib>Micheli, Leonardo ; Fernandez, Eduardo F. ; Muller, Matthew ; Almonacid, Florencia ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>The identification and prediction of the daily soiling profiles of a photovoltaic site is essential to plan the optimal cleaning schedule. In this article, we analyze and propose various methods to extract and generate photovoltaic soiling profiles, in order to improve the analysis and the forecast of the losses. New soiling rate extraction methods are proposed to reflect the seasonal variability of the soiling rates and, for this reason, are found to identify the most convenient cleaning day with the highest accuracy for the investigated sites. Also, we present an approach that could be used to predict future soiling losses through the implementation of stochastic weather generation algorithms whose ability to identify in advance the best cleaning schedule is also successfully tested. The methods presented in this article can optimize the operation and maintenance schedule and could make it possible, in the future, to predict soiling losses through analysis based only on environmental parameters, such as rainfall and particulate matter, without the need of long-term soiling data.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2019.2943706</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cleaning ; Data mining ; Field performance ; Maintenance management ; Optimization ; OTHER INSTRUMENTATION ; photovoltaic (PV) systems ; Photovoltaic cells ; Photovoltaic systems ; prediction methods ; Rain ; Rainfall ; Schedules ; Seasonal variations ; Soil measurements ; soiling ; SOLAR ENERGY ; stochastic processes ; time series analysis ; Weather</subject><ispartof>IEEE journal of photovoltaics, 2020-01, Vol.10 (1), p.197-205</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-c66cec479dad5778a0031fee52879009b3b8a1ba26f23f6ec6c06de76e97eea93</citedby><cites>FETCH-LOGICAL-c372t-c66cec479dad5778a0031fee52879009b3b8a1ba26f23f6ec6c06de76e97eea93</cites><orcidid>0000-0001-7986-7560 ; 0000-0001-7352-2377 ; 0000-0001-7934-9755 ; 0000000173522377 ; 0000000179349755 ; 0000000179867560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8880477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8880477$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1593090$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Micheli, Leonardo</creatorcontrib><creatorcontrib>Fernandez, Eduardo F.</creatorcontrib><creatorcontrib>Muller, Matthew</creatorcontrib><creatorcontrib>Almonacid, Florencia</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Extracting and Generating PV Soiling Profiles for Analysis, Forecasting, and Cleaning Optimization</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>The identification and prediction of the daily soiling profiles of a photovoltaic site is essential to plan the optimal cleaning schedule. In this article, we analyze and propose various methods to extract and generate photovoltaic soiling profiles, in order to improve the analysis and the forecast of the losses. New soiling rate extraction methods are proposed to reflect the seasonal variability of the soiling rates and, for this reason, are found to identify the most convenient cleaning day with the highest accuracy for the investigated sites. Also, we present an approach that could be used to predict future soiling losses through the implementation of stochastic weather generation algorithms whose ability to identify in advance the best cleaning schedule is also successfully tested. The methods presented in this article can optimize the operation and maintenance schedule and could make it possible, in the future, to predict soiling losses through analysis based only on environmental parameters, such as rainfall and particulate matter, without the need of long-term soiling data.</description><subject>Algorithms</subject><subject>Cleaning</subject><subject>Data mining</subject><subject>Field performance</subject><subject>Maintenance management</subject><subject>Optimization</subject><subject>OTHER INSTRUMENTATION</subject><subject>photovoltaic (PV) systems</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>prediction methods</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Schedules</subject><subject>Seasonal variations</subject><subject>Soil measurements</subject><subject>soiling</subject><subject>SOLAR ENERGY</subject><subject>stochastic processes</subject><subject>time series analysis</subject><subject>Weather</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhjdGEwnyC_Sw0SvgtN1tt0dC-NCQQCJybUqZ1ZJli-2SiL_eXUDnMtPkeSbTN4oeCPQJAfn8upjOl_NVnwKRfSoTJoBfRS1KUt5jCbDrv5ll5DbqhLCFujiknCetaD36rrw2lS0_Yl1u4gmW6PXpuVjFb84Wp9G73BYY4tz5eFDq4hhs6MZj59Ho0NDdkz0sUJeNMN9Xdmd_6kWuvItucl0E7Fx6O3ofj5bDaW82n7wMB7OeYYJWPcO5QZMIudGbVIhMAzCSI6Y0ExJArtk602StKc8pyzkaboBvUHCUAlFL1o4ez3tdfZEKxlZoPo0rSzSVIqlkIKGGns7Q3ruvA4ZKbd3B1z8KijIGQNMMaE0lZ8p4F4LHXO293Wl_VARUk7q6pK6a1NUl9Vq7P2sWEf-VLMsgEYL9AqkLfp0</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Micheli, Leonardo</creator><creator>Fernandez, Eduardo F.</creator><creator>Muller, Matthew</creator><creator>Almonacid, Florencia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7986-7560</orcidid><orcidid>https://orcid.org/0000-0001-7352-2377</orcidid><orcidid>https://orcid.org/0000-0001-7934-9755</orcidid><orcidid>https://orcid.org/0000000173522377</orcidid><orcidid>https://orcid.org/0000000179349755</orcidid><orcidid>https://orcid.org/0000000179867560</orcidid></search><sort><creationdate>20200101</creationdate><title>Extracting and Generating PV Soiling Profiles for Analysis, Forecasting, and Cleaning Optimization</title><author>Micheli, Leonardo ; Fernandez, Eduardo F. ; Muller, Matthew ; Almonacid, Florencia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-c66cec479dad5778a0031fee52879009b3b8a1ba26f23f6ec6c06de76e97eea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cleaning</topic><topic>Data mining</topic><topic>Field performance</topic><topic>Maintenance management</topic><topic>Optimization</topic><topic>OTHER INSTRUMENTATION</topic><topic>photovoltaic (PV) systems</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>prediction methods</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Schedules</topic><topic>Seasonal variations</topic><topic>Soil measurements</topic><topic>soiling</topic><topic>SOLAR ENERGY</topic><topic>stochastic processes</topic><topic>time series analysis</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Micheli, Leonardo</creatorcontrib><creatorcontrib>Fernandez, Eduardo F.</creatorcontrib><creatorcontrib>Muller, Matthew</creatorcontrib><creatorcontrib>Almonacid, Florencia</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Micheli, Leonardo</au><au>Fernandez, Eduardo F.</au><au>Muller, Matthew</au><au>Almonacid, Florencia</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting and Generating PV Soiling Profiles for Analysis, Forecasting, and Cleaning Optimization</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>197</spage><epage>205</epage><pages>197-205</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>The identification and prediction of the daily soiling profiles of a photovoltaic site is essential to plan the optimal cleaning schedule. In this article, we analyze and propose various methods to extract and generate photovoltaic soiling profiles, in order to improve the analysis and the forecast of the losses. New soiling rate extraction methods are proposed to reflect the seasonal variability of the soiling rates and, for this reason, are found to identify the most convenient cleaning day with the highest accuracy for the investigated sites. Also, we present an approach that could be used to predict future soiling losses through the implementation of stochastic weather generation algorithms whose ability to identify in advance the best cleaning schedule is also successfully tested. The methods presented in this article can optimize the operation and maintenance schedule and could make it possible, in the future, to predict soiling losses through analysis based only on environmental parameters, such as rainfall and particulate matter, without the need of long-term soiling data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2019.2943706</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7986-7560</orcidid><orcidid>https://orcid.org/0000-0001-7352-2377</orcidid><orcidid>https://orcid.org/0000-0001-7934-9755</orcidid><orcidid>https://orcid.org/0000000173522377</orcidid><orcidid>https://orcid.org/0000000179349755</orcidid><orcidid>https://orcid.org/0000000179867560</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2020-01, Vol.10 (1), p.197-205
issn 2156-3381
2156-3403
language eng
recordid cdi_ieee_primary_8880477
source IEEE Electronic Library (IEL)
subjects Algorithms
Cleaning
Data mining
Field performance
Maintenance management
Optimization
OTHER INSTRUMENTATION
photovoltaic (PV) systems
Photovoltaic cells
Photovoltaic systems
prediction methods
Rain
Rainfall
Schedules
Seasonal variations
Soil measurements
soiling
SOLAR ENERGY
stochastic processes
time series analysis
Weather
title Extracting and Generating PV Soiling Profiles for Analysis, Forecasting, and Cleaning Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20and%20Generating%20PV%20Soiling%20Profiles%20for%20Analysis,%20Forecasting,%20and%20Cleaning%20Optimization&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Micheli,%20Leonardo&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2020-01-01&rft.volume=10&rft.issue=1&rft.spage=197&rft.epage=205&rft.pages=197-205&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2019.2943706&rft_dat=%3Cproquest_RIE%3E2330025802%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330025802&rft_id=info:pmid/&rft_ieee_id=8880477&rfr_iscdi=true