Power Grid Partitioning Based on Functional Community Structure

Network partitioning is a popular research topic. Not all available partitioning methods are equally suitable for power grids. Community detection is a critical issue in complex network theory, and power grid is a typical type of complex network. This paper proposes a functional community structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.152624-152634
Hauptverfasser: Zhao, Chuanzhi, Zhao, Jintang, Wu, Chunchao, Wang, Xiaoliang, Xue, Fei, Lu, Shaofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152634
container_issue
container_start_page 152624
container_title IEEE access
container_volume 7
creator Zhao, Chuanzhi
Zhao, Jintang
Wu, Chunchao
Wang, Xiaoliang
Xue, Fei
Lu, Shaofeng
description Network partitioning is a popular research topic. Not all available partitioning methods are equally suitable for power grids. Community detection is a critical issue in complex network theory, and power grid is a typical type of complex network. This paper proposes a functional community structure based on an extended weighted network model. An extended adjacency matrix is used to represent an extended weighted complex network model based on coupling strength rather than the conventional adjacency matrix. Meanwhile, we upgraded the Newman fast algorithm of community detection for establishing a novel power grid partitioning algorithm. The electrical coupling strength (ECS) is defined to better reflect electrical characteristics between any two nodes in power grid. Modularity is also redefined as electrical modularity based on ECS. The Newman fast algorithm is upgraded with electrical modularity maximization as the objective to detect functional communities in power grids. A case study on IEEE test systems with 30, 39, 118, 300 buses and one Italian power network demonstrates the rationality of the extended weighted network model and partitioning algorithm.
doi_str_mv 10.1109/ACCESS.2019.2948606
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8878124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8878124</ieee_id><doaj_id>oai_doaj_org_article_a5a9fd0aafc347649ce84f1a44bb6d59</doaj_id><sourcerecordid>2455617503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-3ef532cf0093556f68dfd07aeed0b75917ffc91cb5d10ee6b03262a2d15c79703</originalsourceid><addsrcrecordid>eNpNUE1rwkAQDaWFivUXeAn0HLvfmz0VG9QKQgXb87LZD4lo1m4Siv--m0akc5nhMe_Nm5ckUwhmEALxMi-KxW43QwCKGRIkZ4DdJSMEmcgwxez-3_yYTJrmAGLlEaJ8lLxu_Y8N6SpUJt2q0FZt5euq3qdvqrEm9XW67Grdg-qYFv506uqqvaS7NnS67YJ9Sh6cOjZ2cu3j5Gu5-Czes83Hal3MN5kmNG8zbB3FSDsABKaUOZYbZwBX1hpQciogd04LqEtqILCWlQAjhhQykGouOMDjZD3oGq8O8hyqkwoX6VUl_wAf9rJ3r49WKqpEFFfKaUw4I0LbnDioCClLZqiIWs-D1jn47842rTz4LsQHG4lIdAc5BThu4WFLB980wbrbVQhkH7wcgpd98PIafGRNB1Zlrb0x8pznEBH8Cw-ffpc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455617503</pqid></control><display><type>article</type><title>Power Grid Partitioning Based on Functional Community Structure</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhao, Chuanzhi ; Zhao, Jintang ; Wu, Chunchao ; Wang, Xiaoliang ; Xue, Fei ; Lu, Shaofeng</creator><creatorcontrib>Zhao, Chuanzhi ; Zhao, Jintang ; Wu, Chunchao ; Wang, Xiaoliang ; Xue, Fei ; Lu, Shaofeng</creatorcontrib><description>Network partitioning is a popular research topic. Not all available partitioning methods are equally suitable for power grids. Community detection is a critical issue in complex network theory, and power grid is a typical type of complex network. This paper proposes a functional community structure based on an extended weighted network model. An extended adjacency matrix is used to represent an extended weighted complex network model based on coupling strength rather than the conventional adjacency matrix. Meanwhile, we upgraded the Newman fast algorithm of community detection for establishing a novel power grid partitioning algorithm. The electrical coupling strength (ECS) is defined to better reflect electrical characteristics between any two nodes in power grid. Modularity is also redefined as electrical modularity based on ECS. The Newman fast algorithm is upgraded with electrical modularity maximization as the objective to detect functional communities in power grids. A case study on IEEE test systems with 30, 39, 118, 300 buses and one Italian power network demonstrates the rationality of the extended weighted network model and partitioning algorithm.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2948606</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Clustering algorithms ; community detection ; Complex network ; Complex networks ; Coupling ; Couplings ; Electric power grids ; electrical coupling strength ; functional community ; Impedance ; Modularity ; Newman fast algorithm ; Partitioning ; Partitioning algorithms ; power grid partition ; Power grids ; Transmission line matrix methods</subject><ispartof>IEEE access, 2019, Vol.7, p.152624-152634</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-3ef532cf0093556f68dfd07aeed0b75917ffc91cb5d10ee6b03262a2d15c79703</citedby><cites>FETCH-LOGICAL-c458t-3ef532cf0093556f68dfd07aeed0b75917ffc91cb5d10ee6b03262a2d15c79703</cites><orcidid>0000-0003-3567-258X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8878124$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhao, Chuanzhi</creatorcontrib><creatorcontrib>Zhao, Jintang</creatorcontrib><creatorcontrib>Wu, Chunchao</creatorcontrib><creatorcontrib>Wang, Xiaoliang</creatorcontrib><creatorcontrib>Xue, Fei</creatorcontrib><creatorcontrib>Lu, Shaofeng</creatorcontrib><title>Power Grid Partitioning Based on Functional Community Structure</title><title>IEEE access</title><addtitle>Access</addtitle><description>Network partitioning is a popular research topic. Not all available partitioning methods are equally suitable for power grids. Community detection is a critical issue in complex network theory, and power grid is a typical type of complex network. This paper proposes a functional community structure based on an extended weighted network model. An extended adjacency matrix is used to represent an extended weighted complex network model based on coupling strength rather than the conventional adjacency matrix. Meanwhile, we upgraded the Newman fast algorithm of community detection for establishing a novel power grid partitioning algorithm. The electrical coupling strength (ECS) is defined to better reflect electrical characteristics between any two nodes in power grid. Modularity is also redefined as electrical modularity based on ECS. The Newman fast algorithm is upgraded with electrical modularity maximization as the objective to detect functional communities in power grids. A case study on IEEE test systems with 30, 39, 118, 300 buses and one Italian power network demonstrates the rationality of the extended weighted network model and partitioning algorithm.</description><subject>Algorithms</subject><subject>Clustering algorithms</subject><subject>community detection</subject><subject>Complex network</subject><subject>Complex networks</subject><subject>Coupling</subject><subject>Couplings</subject><subject>Electric power grids</subject><subject>electrical coupling strength</subject><subject>functional community</subject><subject>Impedance</subject><subject>Modularity</subject><subject>Newman fast algorithm</subject><subject>Partitioning</subject><subject>Partitioning algorithms</subject><subject>power grid partition</subject><subject>Power grids</subject><subject>Transmission line matrix methods</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1rwkAQDaWFivUXeAn0HLvfmz0VG9QKQgXb87LZD4lo1m4Siv--m0akc5nhMe_Nm5ckUwhmEALxMi-KxW43QwCKGRIkZ4DdJSMEmcgwxez-3_yYTJrmAGLlEaJ8lLxu_Y8N6SpUJt2q0FZt5euq3qdvqrEm9XW67Grdg-qYFv506uqqvaS7NnS67YJ9Sh6cOjZ2cu3j5Gu5-Czes83Hal3MN5kmNG8zbB3FSDsABKaUOZYbZwBX1hpQciogd04LqEtqILCWlQAjhhQykGouOMDjZD3oGq8O8hyqkwoX6VUl_wAf9rJ3r49WKqpEFFfKaUw4I0LbnDioCClLZqiIWs-D1jn47842rTz4LsQHG4lIdAc5BThu4WFLB980wbrbVQhkH7wcgpd98PIafGRNB1Zlrb0x8pznEBH8Cw-ffpc</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zhao, Chuanzhi</creator><creator>Zhao, Jintang</creator><creator>Wu, Chunchao</creator><creator>Wang, Xiaoliang</creator><creator>Xue, Fei</creator><creator>Lu, Shaofeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3567-258X</orcidid></search><sort><creationdate>2019</creationdate><title>Power Grid Partitioning Based on Functional Community Structure</title><author>Zhao, Chuanzhi ; Zhao, Jintang ; Wu, Chunchao ; Wang, Xiaoliang ; Xue, Fei ; Lu, Shaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-3ef532cf0093556f68dfd07aeed0b75917ffc91cb5d10ee6b03262a2d15c79703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Clustering algorithms</topic><topic>community detection</topic><topic>Complex network</topic><topic>Complex networks</topic><topic>Coupling</topic><topic>Couplings</topic><topic>Electric power grids</topic><topic>electrical coupling strength</topic><topic>functional community</topic><topic>Impedance</topic><topic>Modularity</topic><topic>Newman fast algorithm</topic><topic>Partitioning</topic><topic>Partitioning algorithms</topic><topic>power grid partition</topic><topic>Power grids</topic><topic>Transmission line matrix methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Chuanzhi</creatorcontrib><creatorcontrib>Zhao, Jintang</creatorcontrib><creatorcontrib>Wu, Chunchao</creatorcontrib><creatorcontrib>Wang, Xiaoliang</creatorcontrib><creatorcontrib>Xue, Fei</creatorcontrib><creatorcontrib>Lu, Shaofeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Chuanzhi</au><au>Zhao, Jintang</au><au>Wu, Chunchao</au><au>Wang, Xiaoliang</au><au>Xue, Fei</au><au>Lu, Shaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Grid Partitioning Based on Functional Community Structure</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>152624</spage><epage>152634</epage><pages>152624-152634</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Network partitioning is a popular research topic. Not all available partitioning methods are equally suitable for power grids. Community detection is a critical issue in complex network theory, and power grid is a typical type of complex network. This paper proposes a functional community structure based on an extended weighted network model. An extended adjacency matrix is used to represent an extended weighted complex network model based on coupling strength rather than the conventional adjacency matrix. Meanwhile, we upgraded the Newman fast algorithm of community detection for establishing a novel power grid partitioning algorithm. The electrical coupling strength (ECS) is defined to better reflect electrical characteristics between any two nodes in power grid. Modularity is also redefined as electrical modularity based on ECS. The Newman fast algorithm is upgraded with electrical modularity maximization as the objective to detect functional communities in power grids. A case study on IEEE test systems with 30, 39, 118, 300 buses and one Italian power network demonstrates the rationality of the extended weighted network model and partitioning algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2948606</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3567-258X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.152624-152634
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8878124
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Clustering algorithms
community detection
Complex network
Complex networks
Coupling
Couplings
Electric power grids
electrical coupling strength
functional community
Impedance
Modularity
Newman fast algorithm
Partitioning
Partitioning algorithms
power grid partition
Power grids
Transmission line matrix methods
title Power Grid Partitioning Based on Functional Community Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A25%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Grid%20Partitioning%20Based%20on%20Functional%20Community%20Structure&rft.jtitle=IEEE%20access&rft.au=Zhao,%20Chuanzhi&rft.date=2019&rft.volume=7&rft.spage=152624&rft.epage=152634&rft.pages=152624-152634&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2948606&rft_dat=%3Cproquest_ieee_%3E2455617503%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455617503&rft_id=info:pmid/&rft_ieee_id=8878124&rft_doaj_id=oai_doaj_org_article_a5a9fd0aafc347649ce84f1a44bb6d59&rfr_iscdi=true