Online Time-Resolved Reconstruction Method for Acoustic Tomography System
Acoustic tomography can deliver accurate quantitative reconstruction of the covered temperature distribution with low equipment cost. For the application of real-time temperature field monitoring, both the temporal resolution and reconstruction speed are of great significance. In this article, we de...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2020-07, Vol.69 (7), p.4033-4041 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4041 |
---|---|
container_issue | 7 |
container_start_page | 4033 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 69 |
creator | Bao, Yong Jia, Jiabin |
description | Acoustic tomography can deliver accurate quantitative reconstruction of the covered temperature distribution with low equipment cost. For the application of real-time temperature field monitoring, both the temporal resolution and reconstruction speed are of great significance. In this article, we developed a novel online time-resolved reconstruction (OTRR) method, which can improve temporal resolution to capture dynamic changes and accelerate the tomographic reconstruction process for online real-time monitoring. First, by exploiting the redundancy of the temporal information, a temporal regularization is designed based on adaptive auto aggressive (AR) model to reduce the required amount of time of flight (TOF) data per frame. A sliding overlapping window is applied to further improve the reconstruction accuracy. Second, recursive reconstruction process performs a sliding iteration over each data segment. For the reconstruction of each frame, the online computation is noniterative. Numerical simulation and lab-scale experiment are performed to validate the proposed OTRR method. The reconstruction images are compared with the OTRR methods based on the Kalman filter. The results show that our method can improve the temporal resolution and computational time and produce acceptable results. |
doi_str_mv | 10.1109/TIM.2019.2947949 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8873639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8873639</ieee_id><sourcerecordid>2412218597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-f127c6e13716a9c63766afa4a3456eddb828073829898bc145f7d5275e4511c93</originalsourceid><addsrcrecordid>eNo9kEtrwkAUhYfSQq3tvtBNoOvYeT-WIn0IimDT9RAnNzViMnZmUvDfN6J0dTbfuffwIfRI8IQQbF6K-XJCMTETargy3FyhERFC5UZKeo1GGBOdGy7kLbqLcYcxVpKrEZqvun3TQVY0LeRriH7_C1W2Bue7mELvUuO7bAlp66us9iGbOt_H1Lis8K3_DuVhe8w-jzFBe49u6nIf4eGSY_T19lrMPvLF6n0-my5yxxhLeU2ochIIU0SWxkmmpCzrkpdsGAdVtdFUY8U0NdrojSNc1KoSVAngghBn2Bg9n-8egv_pISa7833ohpeWckIp0cKogcJnygUfY4DaHkLTluFoCbYnYXYQZk_C7EXYUHk6VxoA-Me1Vkwyw_4ACbBmFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412218597</pqid></control><display><type>article</type><title>Online Time-Resolved Reconstruction Method for Acoustic Tomography System</title><source>IEEE Xplore</source><creator>Bao, Yong ; Jia, Jiabin</creator><creatorcontrib>Bao, Yong ; Jia, Jiabin</creatorcontrib><description>Acoustic tomography can deliver accurate quantitative reconstruction of the covered temperature distribution with low equipment cost. For the application of real-time temperature field monitoring, both the temporal resolution and reconstruction speed are of great significance. In this article, we developed a novel online time-resolved reconstruction (OTRR) method, which can improve temporal resolution to capture dynamic changes and accelerate the tomographic reconstruction process for online real-time monitoring. First, by exploiting the redundancy of the temporal information, a temporal regularization is designed based on adaptive auto aggressive (AR) model to reduce the required amount of time of flight (TOF) data per frame. A sliding overlapping window is applied to further improve the reconstruction accuracy. Second, recursive reconstruction process performs a sliding iteration over each data segment. For the reconstruction of each frame, the online computation is noniterative. Numerical simulation and lab-scale experiment are performed to validate the proposed OTRR method. The reconstruction images are compared with the OTRR methods based on the Kalman filter. The results show that our method can improve the temporal resolution and computational time and produce acceptable results.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2019.2947949</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic measurements ; Acoustic tomography ; Acoustics ; Computer simulation ; Computing time ; Equipment costs ; Image reconstruction ; Iterative methods ; Kalman filters ; Mathematical models ; Monitoring ; online reconstruction ; Real time ; Recursive functions ; Redundancy ; Regularization ; Sliding ; Spatial resolution ; Temperature distribution ; Temperature measurement ; Temporal resolution ; time-resolved tomography ; Tomography</subject><ispartof>IEEE transactions on instrumentation and measurement, 2020-07, Vol.69 (7), p.4033-4041</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-f127c6e13716a9c63766afa4a3456eddb828073829898bc145f7d5275e4511c93</citedby><cites>FETCH-LOGICAL-c333t-f127c6e13716a9c63766afa4a3456eddb828073829898bc145f7d5275e4511c93</cites><orcidid>0000-0001-5073-5126 ; 0000-0003-1345-9593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8873639$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8873639$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bao, Yong</creatorcontrib><creatorcontrib>Jia, Jiabin</creatorcontrib><title>Online Time-Resolved Reconstruction Method for Acoustic Tomography System</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Acoustic tomography can deliver accurate quantitative reconstruction of the covered temperature distribution with low equipment cost. For the application of real-time temperature field monitoring, both the temporal resolution and reconstruction speed are of great significance. In this article, we developed a novel online time-resolved reconstruction (OTRR) method, which can improve temporal resolution to capture dynamic changes and accelerate the tomographic reconstruction process for online real-time monitoring. First, by exploiting the redundancy of the temporal information, a temporal regularization is designed based on adaptive auto aggressive (AR) model to reduce the required amount of time of flight (TOF) data per frame. A sliding overlapping window is applied to further improve the reconstruction accuracy. Second, recursive reconstruction process performs a sliding iteration over each data segment. For the reconstruction of each frame, the online computation is noniterative. Numerical simulation and lab-scale experiment are performed to validate the proposed OTRR method. The reconstruction images are compared with the OTRR methods based on the Kalman filter. The results show that our method can improve the temporal resolution and computational time and produce acceptable results.</description><subject>Acoustic measurements</subject><subject>Acoustic tomography</subject><subject>Acoustics</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Equipment costs</subject><subject>Image reconstruction</subject><subject>Iterative methods</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>online reconstruction</subject><subject>Real time</subject><subject>Recursive functions</subject><subject>Redundancy</subject><subject>Regularization</subject><subject>Sliding</subject><subject>Spatial resolution</subject><subject>Temperature distribution</subject><subject>Temperature measurement</subject><subject>Temporal resolution</subject><subject>time-resolved tomography</subject><subject>Tomography</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtrwkAUhYfSQq3tvtBNoOvYeT-WIn0IimDT9RAnNzViMnZmUvDfN6J0dTbfuffwIfRI8IQQbF6K-XJCMTETargy3FyhERFC5UZKeo1GGBOdGy7kLbqLcYcxVpKrEZqvun3TQVY0LeRriH7_C1W2Bue7mELvUuO7bAlp66us9iGbOt_H1Lis8K3_DuVhe8w-jzFBe49u6nIf4eGSY_T19lrMPvLF6n0-my5yxxhLeU2ochIIU0SWxkmmpCzrkpdsGAdVtdFUY8U0NdrojSNc1KoSVAngghBn2Bg9n-8egv_pISa7833ohpeWckIp0cKogcJnygUfY4DaHkLTluFoCbYnYXYQZk_C7EXYUHk6VxoA-Me1Vkwyw_4ACbBmFQ</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Bao, Yong</creator><creator>Jia, Jiabin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5073-5126</orcidid><orcidid>https://orcid.org/0000-0003-1345-9593</orcidid></search><sort><creationdate>20200701</creationdate><title>Online Time-Resolved Reconstruction Method for Acoustic Tomography System</title><author>Bao, Yong ; Jia, Jiabin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-f127c6e13716a9c63766afa4a3456eddb828073829898bc145f7d5275e4511c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic measurements</topic><topic>Acoustic tomography</topic><topic>Acoustics</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Equipment costs</topic><topic>Image reconstruction</topic><topic>Iterative methods</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>online reconstruction</topic><topic>Real time</topic><topic>Recursive functions</topic><topic>Redundancy</topic><topic>Regularization</topic><topic>Sliding</topic><topic>Spatial resolution</topic><topic>Temperature distribution</topic><topic>Temperature measurement</topic><topic>Temporal resolution</topic><topic>time-resolved tomography</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Yong</creatorcontrib><creatorcontrib>Jia, Jiabin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bao, Yong</au><au>Jia, Jiabin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Time-Resolved Reconstruction Method for Acoustic Tomography System</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>69</volume><issue>7</issue><spage>4033</spage><epage>4041</epage><pages>4033-4041</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Acoustic tomography can deliver accurate quantitative reconstruction of the covered temperature distribution with low equipment cost. For the application of real-time temperature field monitoring, both the temporal resolution and reconstruction speed are of great significance. In this article, we developed a novel online time-resolved reconstruction (OTRR) method, which can improve temporal resolution to capture dynamic changes and accelerate the tomographic reconstruction process for online real-time monitoring. First, by exploiting the redundancy of the temporal information, a temporal regularization is designed based on adaptive auto aggressive (AR) model to reduce the required amount of time of flight (TOF) data per frame. A sliding overlapping window is applied to further improve the reconstruction accuracy. Second, recursive reconstruction process performs a sliding iteration over each data segment. For the reconstruction of each frame, the online computation is noniterative. Numerical simulation and lab-scale experiment are performed to validate the proposed OTRR method. The reconstruction images are compared with the OTRR methods based on the Kalman filter. The results show that our method can improve the temporal resolution and computational time and produce acceptable results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2019.2947949</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5073-5126</orcidid><orcidid>https://orcid.org/0000-0003-1345-9593</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2020-07, Vol.69 (7), p.4033-4041 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_8873639 |
source | IEEE Xplore |
subjects | Acoustic measurements Acoustic tomography Acoustics Computer simulation Computing time Equipment costs Image reconstruction Iterative methods Kalman filters Mathematical models Monitoring online reconstruction Real time Recursive functions Redundancy Regularization Sliding Spatial resolution Temperature distribution Temperature measurement Temporal resolution time-resolved tomography Tomography |
title | Online Time-Resolved Reconstruction Method for Acoustic Tomography System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A33%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Time-Resolved%20Reconstruction%20Method%20for%20Acoustic%20Tomography%20System&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Bao,%20Yong&rft.date=2020-07-01&rft.volume=69&rft.issue=7&rft.spage=4033&rft.epage=4041&rft.pages=4033-4041&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2019.2947949&rft_dat=%3Cproquest_RIE%3E2412218597%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412218597&rft_id=info:pmid/&rft_ieee_id=8873639&rfr_iscdi=true |