Quantum Supremacy Circuit Simulation on Sunway TaihuLight
With the rapid progress made by industry and academia, quantum computers with dozens of qubits or even larger size are being realized. However, the fidelity of existing quantum computers often sharply decreases as the circuit depth increases. Thus, an ideal quantum circuit simulator on classical com...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on parallel and distributed systems 2020-04, Vol.31 (4), p.805-816 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 816 |
---|---|
container_issue | 4 |
container_start_page | 805 |
container_title | IEEE transactions on parallel and distributed systems |
container_volume | 31 |
creator | Li, Riling Wu, Bujiao Ying, Mingsheng Sun, Xiaoming Yang, Guangwen |
description | With the rapid progress made by industry and academia, quantum computers with dozens of qubits or even larger size are being realized. However, the fidelity of existing quantum computers often sharply decreases as the circuit depth increases. Thus, an ideal quantum circuit simulator on classical computers, especially on high-performance computers, is needed for benchmarking and validation. We design a large-scale simulator of universal random quantum circuits, often called "quantum supremacy circuits", and implement it on Sunway TaihuLight. The simulator can be used to accomplish the following two tasks: 1) Computing a complete output state-vector; 2) Calculating one or a few amplitudes. We target the simulation of 49-qubit circuits. For task 1), we successfully simulate such a circuit of depth 39, and for task 2) we reach the 55-depth level. To the best of our knowledge, both of the simulation results reach the largest depth for 49-qubit quantum supremacy circuits. |
doi_str_mv | 10.1109/TPDS.2019.2947511 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8869942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8869942</ieee_id><sourcerecordid>2344252019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-f23cdc3f7088f84bcac67309231949c581dedaf944eaf852f23caa01b63a4743</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7-APFS8NyayUebHKV-woJKew_ZNHGzbNs1bZD997bsIgzMHJ53hnkQugWcAWD5UH8-VRnBIDMiWcEBztACOBcpAUHPpxkznkoC8hJdDcMWY2AcswWSX1F3Y2yTKu6DbbU5JKUPJvoxqXwbd3r0fZdMVcXuVx-SWvtNXPnvzXiNLpzeDfbm1Jeofnmuy7d09fH6Xj6uUkNpPqaOUNMY6goshBNsbbTJC4oloSCZNFxAYxvtJGNWO8HJzGuNYZ1TzQpGl-j-uHYf-p9oh1Ft-xi66aIilDHC56cnCo6UCf0wBOvUPvhWh4MCrGZBahakZladBE2Zu2PGW2v_eSFyKRmhf2NmYUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344252019</pqid></control><display><type>article</type><title>Quantum Supremacy Circuit Simulation on Sunway TaihuLight</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Riling ; Wu, Bujiao ; Ying, Mingsheng ; Sun, Xiaoming ; Yang, Guangwen</creator><creatorcontrib>Li, Riling ; Wu, Bujiao ; Ying, Mingsheng ; Sun, Xiaoming ; Yang, Guangwen</creatorcontrib><description>With the rapid progress made by industry and academia, quantum computers with dozens of qubits or even larger size are being realized. However, the fidelity of existing quantum computers often sharply decreases as the circuit depth increases. Thus, an ideal quantum circuit simulator on classical computers, especially on high-performance computers, is needed for benchmarking and validation. We design a large-scale simulator of universal random quantum circuits, often called "quantum supremacy circuits", and implement it on Sunway TaihuLight. The simulator can be used to accomplish the following two tasks: 1) Computing a complete output state-vector; 2) Calculating one or a few amplitudes. We target the simulation of 49-qubit circuits. For task 1), we successfully simulate such a circuit of depth 39, and for task 2) we reach the 55-depth level. To the best of our knowledge, both of the simulation results reach the largest depth for 49-qubit quantum supremacy circuits.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2019.2947511</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit design ; Circuit simulation ; Computer simulation ; Logic gates ; quantum circuit simulation ; Quantum computers ; Quantum computing ; Qubit ; Qubits (quantum computing) ; Simulation ; State vectors ; Sunway TaihuLight ; Supercomputers ; Task analysis</subject><ispartof>IEEE transactions on parallel and distributed systems, 2020-04, Vol.31 (4), p.805-816</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-f23cdc3f7088f84bcac67309231949c581dedaf944eaf852f23caa01b63a4743</citedby><cites>FETCH-LOGICAL-c336t-f23cdc3f7088f84bcac67309231949c581dedaf944eaf852f23caa01b63a4743</cites><orcidid>0000-0003-4847-702X ; 0000-0002-9545-3779 ; 0000-0003-3894-2979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8869942$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8869942$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Riling</creatorcontrib><creatorcontrib>Wu, Bujiao</creatorcontrib><creatorcontrib>Ying, Mingsheng</creatorcontrib><creatorcontrib>Sun, Xiaoming</creatorcontrib><creatorcontrib>Yang, Guangwen</creatorcontrib><title>Quantum Supremacy Circuit Simulation on Sunway TaihuLight</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>With the rapid progress made by industry and academia, quantum computers with dozens of qubits or even larger size are being realized. However, the fidelity of existing quantum computers often sharply decreases as the circuit depth increases. Thus, an ideal quantum circuit simulator on classical computers, especially on high-performance computers, is needed for benchmarking and validation. We design a large-scale simulator of universal random quantum circuits, often called "quantum supremacy circuits", and implement it on Sunway TaihuLight. The simulator can be used to accomplish the following two tasks: 1) Computing a complete output state-vector; 2) Calculating one or a few amplitudes. We target the simulation of 49-qubit circuits. For task 1), we successfully simulate such a circuit of depth 39, and for task 2) we reach the 55-depth level. To the best of our knowledge, both of the simulation results reach the largest depth for 49-qubit quantum supremacy circuits.</description><subject>Circuit design</subject><subject>Circuit simulation</subject><subject>Computer simulation</subject><subject>Logic gates</subject><subject>quantum circuit simulation</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Qubit</subject><subject>Qubits (quantum computing)</subject><subject>Simulation</subject><subject>State vectors</subject><subject>Sunway TaihuLight</subject><subject>Supercomputers</subject><subject>Task analysis</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LxDAQhoMouK7-APFS8NyayUebHKV-woJKew_ZNHGzbNs1bZD997bsIgzMHJ53hnkQugWcAWD5UH8-VRnBIDMiWcEBztACOBcpAUHPpxkznkoC8hJdDcMWY2AcswWSX1F3Y2yTKu6DbbU5JKUPJvoxqXwbd3r0fZdMVcXuVx-SWvtNXPnvzXiNLpzeDfbm1Jeofnmuy7d09fH6Xj6uUkNpPqaOUNMY6goshBNsbbTJC4oloSCZNFxAYxvtJGNWO8HJzGuNYZ1TzQpGl-j-uHYf-p9oh1Ft-xi66aIilDHC56cnCo6UCf0wBOvUPvhWh4MCrGZBahakZladBE2Zu2PGW2v_eSFyKRmhf2NmYUA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Li, Riling</creator><creator>Wu, Bujiao</creator><creator>Ying, Mingsheng</creator><creator>Sun, Xiaoming</creator><creator>Yang, Guangwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4847-702X</orcidid><orcidid>https://orcid.org/0000-0002-9545-3779</orcidid><orcidid>https://orcid.org/0000-0003-3894-2979</orcidid></search><sort><creationdate>20200401</creationdate><title>Quantum Supremacy Circuit Simulation on Sunway TaihuLight</title><author>Li, Riling ; Wu, Bujiao ; Ying, Mingsheng ; Sun, Xiaoming ; Yang, Guangwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-f23cdc3f7088f84bcac67309231949c581dedaf944eaf852f23caa01b63a4743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Circuit design</topic><topic>Circuit simulation</topic><topic>Computer simulation</topic><topic>Logic gates</topic><topic>quantum circuit simulation</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Qubit</topic><topic>Qubits (quantum computing)</topic><topic>Simulation</topic><topic>State vectors</topic><topic>Sunway TaihuLight</topic><topic>Supercomputers</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Riling</creatorcontrib><creatorcontrib>Wu, Bujiao</creatorcontrib><creatorcontrib>Ying, Mingsheng</creatorcontrib><creatorcontrib>Sun, Xiaoming</creatorcontrib><creatorcontrib>Yang, Guangwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Riling</au><au>Wu, Bujiao</au><au>Ying, Mingsheng</au><au>Sun, Xiaoming</au><au>Yang, Guangwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Supremacy Circuit Simulation on Sunway TaihuLight</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>31</volume><issue>4</issue><spage>805</spage><epage>816</epage><pages>805-816</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>With the rapid progress made by industry and academia, quantum computers with dozens of qubits or even larger size are being realized. However, the fidelity of existing quantum computers often sharply decreases as the circuit depth increases. Thus, an ideal quantum circuit simulator on classical computers, especially on high-performance computers, is needed for benchmarking and validation. We design a large-scale simulator of universal random quantum circuits, often called "quantum supremacy circuits", and implement it on Sunway TaihuLight. The simulator can be used to accomplish the following two tasks: 1) Computing a complete output state-vector; 2) Calculating one or a few amplitudes. We target the simulation of 49-qubit circuits. For task 1), we successfully simulate such a circuit of depth 39, and for task 2) we reach the 55-depth level. To the best of our knowledge, both of the simulation results reach the largest depth for 49-qubit quantum supremacy circuits.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2019.2947511</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4847-702X</orcidid><orcidid>https://orcid.org/0000-0002-9545-3779</orcidid><orcidid>https://orcid.org/0000-0003-3894-2979</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9219 |
ispartof | IEEE transactions on parallel and distributed systems, 2020-04, Vol.31 (4), p.805-816 |
issn | 1045-9219 1558-2183 |
language | eng |
recordid | cdi_ieee_primary_8869942 |
source | IEEE Electronic Library (IEL) |
subjects | Circuit design Circuit simulation Computer simulation Logic gates quantum circuit simulation Quantum computers Quantum computing Qubit Qubits (quantum computing) Simulation State vectors Sunway TaihuLight Supercomputers Task analysis |
title | Quantum Supremacy Circuit Simulation on Sunway TaihuLight |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Supremacy%20Circuit%20Simulation%20on%20Sunway%20TaihuLight&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Li,%20Riling&rft.date=2020-04-01&rft.volume=31&rft.issue=4&rft.spage=805&rft.epage=816&rft.pages=805-816&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2019.2947511&rft_dat=%3Cproquest_RIE%3E2344252019%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344252019&rft_id=info:pmid/&rft_ieee_id=8869942&rfr_iscdi=true |