Quantum Supremacy Circuit Simulation on Sunway TaihuLight

With the rapid progress made by industry and academia, quantum computers with dozens of qubits or even larger size are being realized. However, the fidelity of existing quantum computers often sharply decreases as the circuit depth increases. Thus, an ideal quantum circuit simulator on classical com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2020-04, Vol.31 (4), p.805-816
Hauptverfasser: Li, Riling, Wu, Bujiao, Ying, Mingsheng, Sun, Xiaoming, Yang, Guangwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 816
container_issue 4
container_start_page 805
container_title IEEE transactions on parallel and distributed systems
container_volume 31
creator Li, Riling
Wu, Bujiao
Ying, Mingsheng
Sun, Xiaoming
Yang, Guangwen
description With the rapid progress made by industry and academia, quantum computers with dozens of qubits or even larger size are being realized. However, the fidelity of existing quantum computers often sharply decreases as the circuit depth increases. Thus, an ideal quantum circuit simulator on classical computers, especially on high-performance computers, is needed for benchmarking and validation. We design a large-scale simulator of universal random quantum circuits, often called "quantum supremacy circuits", and implement it on Sunway TaihuLight. The simulator can be used to accomplish the following two tasks: 1) Computing a complete output state-vector; 2) Calculating one or a few amplitudes. We target the simulation of 49-qubit circuits. For task 1), we successfully simulate such a circuit of depth 39, and for task 2) we reach the 55-depth level. To the best of our knowledge, both of the simulation results reach the largest depth for 49-qubit quantum supremacy circuits.
doi_str_mv 10.1109/TPDS.2019.2947511
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8869942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8869942</ieee_id><sourcerecordid>2344252019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-f23cdc3f7088f84bcac67309231949c581dedaf944eaf852f23caa01b63a4743</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7-APFS8NyayUebHKV-woJKew_ZNHGzbNs1bZD997bsIgzMHJ53hnkQugWcAWD5UH8-VRnBIDMiWcEBztACOBcpAUHPpxkznkoC8hJdDcMWY2AcswWSX1F3Y2yTKu6DbbU5JKUPJvoxqXwbd3r0fZdMVcXuVx-SWvtNXPnvzXiNLpzeDfbm1Jeofnmuy7d09fH6Xj6uUkNpPqaOUNMY6goshBNsbbTJC4oloSCZNFxAYxvtJGNWO8HJzGuNYZ1TzQpGl-j-uHYf-p9oh1Ft-xi66aIilDHC56cnCo6UCf0wBOvUPvhWh4MCrGZBahakZladBE2Zu2PGW2v_eSFyKRmhf2NmYUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344252019</pqid></control><display><type>article</type><title>Quantum Supremacy Circuit Simulation on Sunway TaihuLight</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Riling ; Wu, Bujiao ; Ying, Mingsheng ; Sun, Xiaoming ; Yang, Guangwen</creator><creatorcontrib>Li, Riling ; Wu, Bujiao ; Ying, Mingsheng ; Sun, Xiaoming ; Yang, Guangwen</creatorcontrib><description>With the rapid progress made by industry and academia, quantum computers with dozens of qubits or even larger size are being realized. However, the fidelity of existing quantum computers often sharply decreases as the circuit depth increases. Thus, an ideal quantum circuit simulator on classical computers, especially on high-performance computers, is needed for benchmarking and validation. We design a large-scale simulator of universal random quantum circuits, often called "quantum supremacy circuits", and implement it on Sunway TaihuLight. The simulator can be used to accomplish the following two tasks: 1) Computing a complete output state-vector; 2) Calculating one or a few amplitudes. We target the simulation of 49-qubit circuits. For task 1), we successfully simulate such a circuit of depth 39, and for task 2) we reach the 55-depth level. To the best of our knowledge, both of the simulation results reach the largest depth for 49-qubit quantum supremacy circuits.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2019.2947511</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit design ; Circuit simulation ; Computer simulation ; Logic gates ; quantum circuit simulation ; Quantum computers ; Quantum computing ; Qubit ; Qubits (quantum computing) ; Simulation ; State vectors ; Sunway TaihuLight ; Supercomputers ; Task analysis</subject><ispartof>IEEE transactions on parallel and distributed systems, 2020-04, Vol.31 (4), p.805-816</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-f23cdc3f7088f84bcac67309231949c581dedaf944eaf852f23caa01b63a4743</citedby><cites>FETCH-LOGICAL-c336t-f23cdc3f7088f84bcac67309231949c581dedaf944eaf852f23caa01b63a4743</cites><orcidid>0000-0003-4847-702X ; 0000-0002-9545-3779 ; 0000-0003-3894-2979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8869942$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8869942$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Riling</creatorcontrib><creatorcontrib>Wu, Bujiao</creatorcontrib><creatorcontrib>Ying, Mingsheng</creatorcontrib><creatorcontrib>Sun, Xiaoming</creatorcontrib><creatorcontrib>Yang, Guangwen</creatorcontrib><title>Quantum Supremacy Circuit Simulation on Sunway TaihuLight</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>With the rapid progress made by industry and academia, quantum computers with dozens of qubits or even larger size are being realized. However, the fidelity of existing quantum computers often sharply decreases as the circuit depth increases. Thus, an ideal quantum circuit simulator on classical computers, especially on high-performance computers, is needed for benchmarking and validation. We design a large-scale simulator of universal random quantum circuits, often called "quantum supremacy circuits", and implement it on Sunway TaihuLight. The simulator can be used to accomplish the following two tasks: 1) Computing a complete output state-vector; 2) Calculating one or a few amplitudes. We target the simulation of 49-qubit circuits. For task 1), we successfully simulate such a circuit of depth 39, and for task 2) we reach the 55-depth level. To the best of our knowledge, both of the simulation results reach the largest depth for 49-qubit quantum supremacy circuits.</description><subject>Circuit design</subject><subject>Circuit simulation</subject><subject>Computer simulation</subject><subject>Logic gates</subject><subject>quantum circuit simulation</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Qubit</subject><subject>Qubits (quantum computing)</subject><subject>Simulation</subject><subject>State vectors</subject><subject>Sunway TaihuLight</subject><subject>Supercomputers</subject><subject>Task analysis</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LxDAQhoMouK7-APFS8NyayUebHKV-woJKew_ZNHGzbNs1bZD997bsIgzMHJ53hnkQugWcAWD5UH8-VRnBIDMiWcEBztACOBcpAUHPpxkznkoC8hJdDcMWY2AcswWSX1F3Y2yTKu6DbbU5JKUPJvoxqXwbd3r0fZdMVcXuVx-SWvtNXPnvzXiNLpzeDfbm1Jeofnmuy7d09fH6Xj6uUkNpPqaOUNMY6goshBNsbbTJC4oloSCZNFxAYxvtJGNWO8HJzGuNYZ1TzQpGl-j-uHYf-p9oh1Ft-xi66aIilDHC56cnCo6UCf0wBOvUPvhWh4MCrGZBahakZladBE2Zu2PGW2v_eSFyKRmhf2NmYUA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Li, Riling</creator><creator>Wu, Bujiao</creator><creator>Ying, Mingsheng</creator><creator>Sun, Xiaoming</creator><creator>Yang, Guangwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4847-702X</orcidid><orcidid>https://orcid.org/0000-0002-9545-3779</orcidid><orcidid>https://orcid.org/0000-0003-3894-2979</orcidid></search><sort><creationdate>20200401</creationdate><title>Quantum Supremacy Circuit Simulation on Sunway TaihuLight</title><author>Li, Riling ; Wu, Bujiao ; Ying, Mingsheng ; Sun, Xiaoming ; Yang, Guangwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-f23cdc3f7088f84bcac67309231949c581dedaf944eaf852f23caa01b63a4743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Circuit design</topic><topic>Circuit simulation</topic><topic>Computer simulation</topic><topic>Logic gates</topic><topic>quantum circuit simulation</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Qubit</topic><topic>Qubits (quantum computing)</topic><topic>Simulation</topic><topic>State vectors</topic><topic>Sunway TaihuLight</topic><topic>Supercomputers</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Riling</creatorcontrib><creatorcontrib>Wu, Bujiao</creatorcontrib><creatorcontrib>Ying, Mingsheng</creatorcontrib><creatorcontrib>Sun, Xiaoming</creatorcontrib><creatorcontrib>Yang, Guangwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Riling</au><au>Wu, Bujiao</au><au>Ying, Mingsheng</au><au>Sun, Xiaoming</au><au>Yang, Guangwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Supremacy Circuit Simulation on Sunway TaihuLight</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>31</volume><issue>4</issue><spage>805</spage><epage>816</epage><pages>805-816</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>With the rapid progress made by industry and academia, quantum computers with dozens of qubits or even larger size are being realized. However, the fidelity of existing quantum computers often sharply decreases as the circuit depth increases. Thus, an ideal quantum circuit simulator on classical computers, especially on high-performance computers, is needed for benchmarking and validation. We design a large-scale simulator of universal random quantum circuits, often called "quantum supremacy circuits", and implement it on Sunway TaihuLight. The simulator can be used to accomplish the following two tasks: 1) Computing a complete output state-vector; 2) Calculating one or a few amplitudes. We target the simulation of 49-qubit circuits. For task 1), we successfully simulate such a circuit of depth 39, and for task 2) we reach the 55-depth level. To the best of our knowledge, both of the simulation results reach the largest depth for 49-qubit quantum supremacy circuits.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2019.2947511</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4847-702X</orcidid><orcidid>https://orcid.org/0000-0002-9545-3779</orcidid><orcidid>https://orcid.org/0000-0003-3894-2979</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 2020-04, Vol.31 (4), p.805-816
issn 1045-9219
1558-2183
language eng
recordid cdi_ieee_primary_8869942
source IEEE Electronic Library (IEL)
subjects Circuit design
Circuit simulation
Computer simulation
Logic gates
quantum circuit simulation
Quantum computers
Quantum computing
Qubit
Qubits (quantum computing)
Simulation
State vectors
Sunway TaihuLight
Supercomputers
Task analysis
title Quantum Supremacy Circuit Simulation on Sunway TaihuLight
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Supremacy%20Circuit%20Simulation%20on%20Sunway%20TaihuLight&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Li,%20Riling&rft.date=2020-04-01&rft.volume=31&rft.issue=4&rft.spage=805&rft.epage=816&rft.pages=805-816&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2019.2947511&rft_dat=%3Cproquest_RIE%3E2344252019%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344252019&rft_id=info:pmid/&rft_ieee_id=8869942&rfr_iscdi=true