A −68 dB THD, 0.6 mm2 Active Area Biosignal Acquisition System With a 40-320 Hz Duty-Cycle Controlled Filter

This paper presents a reconfigurable front-end (FE) circuit for acquiring various low-frequency biomedical signals. An energy and area-efficient tunable filter is proposed for adapting the FE bandwidth to the signal of interest. The filter is designed using a switched-R-MOSFET-C (SRMC) technique to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2020-01, Vol.67 (1), p.48-59
Hauptverfasser: Hsu, Yu-Pin, Liu, Zemin, Hella, Mona Mostafa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 48
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 67
creator Hsu, Yu-Pin
Liu, Zemin
Hella, Mona Mostafa
description This paper presents a reconfigurable front-end (FE) circuit for acquiring various low-frequency biomedical signals. An energy and area-efficient tunable filter is proposed for adapting the FE bandwidth to the signal of interest. The filter is designed using a switched-R-MOSFET-C (SRMC) technique to realize the needed ultra-low cutoff frequency. An 8-bit SAR ADC, following the filter, quantizes the signal, while the SAR control logic is re-used to accurately program the filter bandwidth from 40 Hz to 320 Hz with a 40 Hz step. The prototype chip includes the complete FE system, formed of an instrumentation amplifier (IA), a programmable-gain amplifier (PGA), and the proposed tunable filter followed by the SAR ADC. Implemented in 0.13 μm CMOS technology, the IC occupies a 0.6 mm2 active area while consuming 6.3 μW dc power from a 2-V supply. Measurement results show a FE gain range of 43-55 dB with an integrated input-referred noise (V IRN ) of 3.45 μV rms , a 66 dB dynamic range (DR), and a total-harmonic distortion (THD) of -68 dB at an input amplitude of 6 mVPP. The effective number of bits (ENOB) for the ADC is 7.921 bits at 1-kS/s. In real-time Electrocardiogram (ECG), Electromyography (EMG), and Electroencephalography (EEG) measurements, high-fidelity waveforms are acquired using the proposed FE IC, validating the system's reconfigurability and high-linearity.
doi_str_mv 10.1109/TCSI.2019.2943904
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8866745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8866745</ieee_id><sourcerecordid>2339343125</sourcerecordid><originalsourceid>FETCH-LOGICAL-i485-789489b9cce64343a780d471142356f5d2c139f9aa3898356490a346ff7327b13</originalsourceid><addsrcrecordid>eNotj8tKw0AYhQdRsFYfQNz84NbEuWUys0xTawsFFw24DNNkolNyaTNTIT6Bax_RJzFSV-dw-PjgIHRLcEgIVo9ZulmFFBMVUsWZwvwMTUgUyQBLLM7_OleBZFReoivndhhThRmZoDaBn69vIaGcQbacPwAOBTQNhaTw9sNA0hsNM9s5-9bqelwPR-ust10Lm8F508Cr9e-ggeOAUQzLT5gf_RCkQ1EbSLvW911dmxIWtvamv0YXla6dufnPKcoWT1m6DNYvz6s0WQeWyyiIpeJSbVVRGMEZZzqWuOQxIZyySFRRSQvCVKW0ZlLJceIKa8ZFVcWMxlvCpuj-pN333eFonM933bEfD7icMqZGJaHRSN2dKGuMyfe9bXQ_5FIKEfOI_QJrOV9y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339343125</pqid></control><display><type>article</type><title>A −68 dB THD, 0.6 mm2 Active Area Biosignal Acquisition System With a 40-320 Hz Duty-Cycle Controlled Filter</title><source>IEEE Electronic Library (IEL)</source><creator>Hsu, Yu-Pin ; Liu, Zemin ; Hella, Mona Mostafa</creator><creatorcontrib>Hsu, Yu-Pin ; Liu, Zemin ; Hella, Mona Mostafa</creatorcontrib><description>This paper presents a reconfigurable front-end (FE) circuit for acquiring various low-frequency biomedical signals. An energy and area-efficient tunable filter is proposed for adapting the FE bandwidth to the signal of interest. The filter is designed using a switched-R-MOSFET-C (SRMC) technique to realize the needed ultra-low cutoff frequency. An 8-bit SAR ADC, following the filter, quantizes the signal, while the SAR control logic is re-used to accurately program the filter bandwidth from 40 Hz to 320 Hz with a 40 Hz step. The prototype chip includes the complete FE system, formed of an instrumentation amplifier (IA), a programmable-gain amplifier (PGA), and the proposed tunable filter followed by the SAR ADC. Implemented in 0.13 μm CMOS technology, the IC occupies a 0.6 mm2 active area while consuming 6.3 μW dc power from a 2-V supply. Measurement results show a FE gain range of 43-55 dB with an integrated input-referred noise (V IRN ) of 3.45 μV rms , a 66 dB dynamic range (DR), and a total-harmonic distortion (THD) of -68 dB at an input amplitude of 6 mVPP. The effective number of bits (ENOB) for the ADC is 7.921 bits at 1-kS/s. In real-time Electrocardiogram (ECG), Electromyography (EMG), and Electroencephalography (EEG) measurements, high-fidelity waveforms are acquired using the proposed FE IC, validating the system's reconfigurability and high-linearity.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2019.2943904</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>ADC ; Amplification ; Amplifiers ; and electroencephalography (EEG) ; anti-aliasing ; Bandwidth ; Biosignal acquisition ; Clocks ; CMOS ; electrocardiogram (ECG) ; Electrocardiography ; Electroencephalography ; Electromyography ; electromyography (EMG) ; filter ; front-end (FE) ; Gain ; Harmonic distortion ; Integrated circuits ; Iron ; Linearity ; MOSFETs ; Noise levels ; Power consumption ; sensor interface ; Tunable filters ; Waveforms</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2020-01, Vol.67 (1), p.48-59</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7070-7763 ; 0000-0002-6780-3049 ; 0000-0002-0613-0506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8866745$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8866745$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hsu, Yu-Pin</creatorcontrib><creatorcontrib>Liu, Zemin</creatorcontrib><creatorcontrib>Hella, Mona Mostafa</creatorcontrib><title>A −68 dB THD, 0.6 mm2 Active Area Biosignal Acquisition System With a 40-320 Hz Duty-Cycle Controlled Filter</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>This paper presents a reconfigurable front-end (FE) circuit for acquiring various low-frequency biomedical signals. An energy and area-efficient tunable filter is proposed for adapting the FE bandwidth to the signal of interest. The filter is designed using a switched-R-MOSFET-C (SRMC) technique to realize the needed ultra-low cutoff frequency. An 8-bit SAR ADC, following the filter, quantizes the signal, while the SAR control logic is re-used to accurately program the filter bandwidth from 40 Hz to 320 Hz with a 40 Hz step. The prototype chip includes the complete FE system, formed of an instrumentation amplifier (IA), a programmable-gain amplifier (PGA), and the proposed tunable filter followed by the SAR ADC. Implemented in 0.13 μm CMOS technology, the IC occupies a 0.6 mm2 active area while consuming 6.3 μW dc power from a 2-V supply. Measurement results show a FE gain range of 43-55 dB with an integrated input-referred noise (V IRN ) of 3.45 μV rms , a 66 dB dynamic range (DR), and a total-harmonic distortion (THD) of -68 dB at an input amplitude of 6 mVPP. The effective number of bits (ENOB) for the ADC is 7.921 bits at 1-kS/s. In real-time Electrocardiogram (ECG), Electromyography (EMG), and Electroencephalography (EEG) measurements, high-fidelity waveforms are acquired using the proposed FE IC, validating the system's reconfigurability and high-linearity.</description><subject>ADC</subject><subject>Amplification</subject><subject>Amplifiers</subject><subject>and electroencephalography (EEG)</subject><subject>anti-aliasing</subject><subject>Bandwidth</subject><subject>Biosignal acquisition</subject><subject>Clocks</subject><subject>CMOS</subject><subject>electrocardiogram (ECG)</subject><subject>Electrocardiography</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>electromyography (EMG)</subject><subject>filter</subject><subject>front-end (FE)</subject><subject>Gain</subject><subject>Harmonic distortion</subject><subject>Integrated circuits</subject><subject>Iron</subject><subject>Linearity</subject><subject>MOSFETs</subject><subject>Noise levels</subject><subject>Power consumption</subject><subject>sensor interface</subject><subject>Tunable filters</subject><subject>Waveforms</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotj8tKw0AYhQdRsFYfQNz84NbEuWUys0xTawsFFw24DNNkolNyaTNTIT6Bax_RJzFSV-dw-PjgIHRLcEgIVo9ZulmFFBMVUsWZwvwMTUgUyQBLLM7_OleBZFReoivndhhThRmZoDaBn69vIaGcQbacPwAOBTQNhaTw9sNA0hsNM9s5-9bqelwPR-ust10Lm8F508Cr9e-ggeOAUQzLT5gf_RCkQ1EbSLvW911dmxIWtvamv0YXla6dufnPKcoWT1m6DNYvz6s0WQeWyyiIpeJSbVVRGMEZZzqWuOQxIZyySFRRSQvCVKW0ZlLJceIKa8ZFVcWMxlvCpuj-pN333eFonM933bEfD7icMqZGJaHRSN2dKGuMyfe9bXQ_5FIKEfOI_QJrOV9y</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Hsu, Yu-Pin</creator><creator>Liu, Zemin</creator><creator>Hella, Mona Mostafa</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7070-7763</orcidid><orcidid>https://orcid.org/0000-0002-6780-3049</orcidid><orcidid>https://orcid.org/0000-0002-0613-0506</orcidid></search><sort><creationdate>202001</creationdate><title>A −68 dB THD, 0.6 mm2 Active Area Biosignal Acquisition System With a 40-320 Hz Duty-Cycle Controlled Filter</title><author>Hsu, Yu-Pin ; Liu, Zemin ; Hella, Mona Mostafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i485-789489b9cce64343a780d471142356f5d2c139f9aa3898356490a346ff7327b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ADC</topic><topic>Amplification</topic><topic>Amplifiers</topic><topic>and electroencephalography (EEG)</topic><topic>anti-aliasing</topic><topic>Bandwidth</topic><topic>Biosignal acquisition</topic><topic>Clocks</topic><topic>CMOS</topic><topic>electrocardiogram (ECG)</topic><topic>Electrocardiography</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>electromyography (EMG)</topic><topic>filter</topic><topic>front-end (FE)</topic><topic>Gain</topic><topic>Harmonic distortion</topic><topic>Integrated circuits</topic><topic>Iron</topic><topic>Linearity</topic><topic>MOSFETs</topic><topic>Noise levels</topic><topic>Power consumption</topic><topic>sensor interface</topic><topic>Tunable filters</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Yu-Pin</creatorcontrib><creatorcontrib>Liu, Zemin</creatorcontrib><creatorcontrib>Hella, Mona Mostafa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsu, Yu-Pin</au><au>Liu, Zemin</au><au>Hella, Mona Mostafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A −68 dB THD, 0.6 mm2 Active Area Biosignal Acquisition System With a 40-320 Hz Duty-Cycle Controlled Filter</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2020-01</date><risdate>2020</risdate><volume>67</volume><issue>1</issue><spage>48</spage><epage>59</epage><pages>48-59</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>This paper presents a reconfigurable front-end (FE) circuit for acquiring various low-frequency biomedical signals. An energy and area-efficient tunable filter is proposed for adapting the FE bandwidth to the signal of interest. The filter is designed using a switched-R-MOSFET-C (SRMC) technique to realize the needed ultra-low cutoff frequency. An 8-bit SAR ADC, following the filter, quantizes the signal, while the SAR control logic is re-used to accurately program the filter bandwidth from 40 Hz to 320 Hz with a 40 Hz step. The prototype chip includes the complete FE system, formed of an instrumentation amplifier (IA), a programmable-gain amplifier (PGA), and the proposed tunable filter followed by the SAR ADC. Implemented in 0.13 μm CMOS technology, the IC occupies a 0.6 mm2 active area while consuming 6.3 μW dc power from a 2-V supply. Measurement results show a FE gain range of 43-55 dB with an integrated input-referred noise (V IRN ) of 3.45 μV rms , a 66 dB dynamic range (DR), and a total-harmonic distortion (THD) of -68 dB at an input amplitude of 6 mVPP. The effective number of bits (ENOB) for the ADC is 7.921 bits at 1-kS/s. In real-time Electrocardiogram (ECG), Electromyography (EMG), and Electroencephalography (EEG) measurements, high-fidelity waveforms are acquired using the proposed FE IC, validating the system's reconfigurability and high-linearity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2019.2943904</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7070-7763</orcidid><orcidid>https://orcid.org/0000-0002-6780-3049</orcidid><orcidid>https://orcid.org/0000-0002-0613-0506</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2020-01, Vol.67 (1), p.48-59
issn 1549-8328
1558-0806
language eng
recordid cdi_ieee_primary_8866745
source IEEE Electronic Library (IEL)
subjects ADC
Amplification
Amplifiers
and electroencephalography (EEG)
anti-aliasing
Bandwidth
Biosignal acquisition
Clocks
CMOS
electrocardiogram (ECG)
Electrocardiography
Electroencephalography
Electromyography
electromyography (EMG)
filter
front-end (FE)
Gain
Harmonic distortion
Integrated circuits
Iron
Linearity
MOSFETs
Noise levels
Power consumption
sensor interface
Tunable filters
Waveforms
title A −68 dB THD, 0.6 mm2 Active Area Biosignal Acquisition System With a 40-320 Hz Duty-Cycle Controlled Filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20%E2%88%9268%20dB%20THD,%200.6%20mm2%20Active%20Area%20Biosignal%20Acquisition%20System%20With%20a%2040-320%20Hz%20Duty-Cycle%20Controlled%20Filter&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Hsu,%20Yu-Pin&rft.date=2020-01&rft.volume=67&rft.issue=1&rft.spage=48&rft.epage=59&rft.pages=48-59&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2019.2943904&rft_dat=%3Cproquest_RIE%3E2339343125%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2339343125&rft_id=info:pmid/&rft_ieee_id=8866745&rfr_iscdi=true