Intelligent Hazard-Risk Prediction Model for Train Control Systems

Although there has been substantial research in system analytics for risk assessment in traditional methods, little work has been done for safety risk prediction in communication-based train control (CBTC) system, especially intelligently predicting risk caused by the uncertainty in the system opera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2020-11, Vol.21 (11), p.4693-4704
Hauptverfasser: Liu, Jing, Zhang, Yan, Han, Jiazhen, He, Jifeng, Sun, Junfeng, Zhou, Tingliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4704
container_issue 11
container_start_page 4693
container_title IEEE transactions on intelligent transportation systems
container_volume 21
creator Liu, Jing
Zhang, Yan
Han, Jiazhen
He, Jifeng
Sun, Junfeng
Zhou, Tingliang
description Although there has been substantial research in system analytics for risk assessment in traditional methods, little work has been done for safety risk prediction in communication-based train control (CBTC) system, especially intelligently predicting risk caused by the uncertainty in the system operation. Risk prediction and assessment of hazards in train control systems are vital for the safety and efficiency of urban rail transit. In this paper, we propose an intelligent hazard-risk prediction model based on a deep recurrent neural network for a new communication-mode CBTC system. First, a train-to-train communication-based train control (T2T-CBTC) system is proposed to improve the drawback of CBTC in information-exchanging mode. Then we design a risk prediction feature selection and generation method and estimate a critical function feature in the T2T-CBTC system by statistical model checking. Finally, we construct our intelligent hazard-risk prediction model based on a deep recurrent neural network using a long-short-term memory (LSTM) network. The model had excellent risk prediction classification results and performance in our experiment, even for unbalanced data set. This model consistently outperforms the deep belief network trained in Accuracy, Precision, Recall and F1-score for the hazard-risk prediction problem. Specifically, the mean accuracy is 97.2% and mean F1-score is 93.9% in overall performance of model. The improvements of our model against DBN model are 8.2% for Precision, 7% for Recall and 8% for F1-score.
doi_str_mv 10.1109/TITS.2019.2945333
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8865446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8865446</ieee_id><sourcerecordid>2458750265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3ec7008555a094e1862cf17831f0ba252d194982a4551b89a19793de560fac973</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN4EvO7MSXLa5FKHc4OJ4up1yNpUOrtmJt3FfHpbNrw6P4fvPwc-Qm6BTQCYfsgX-WrCGegJ1xKFEGdkBIgqYQzS8yFzmWiG7JJcxbjptxIBRuRp0Xauaeov13Z0bn9tKJOPOn7T9-DKuuhq39JXX7qGVj7QPNi6pVPfdsE3dHWIndvGa3JR2Sa6m9Mck8_Zcz6dJ8u3l8X0cZkUXIsuEa7IGFOIaJmWDlTKiwoyJaBia8uRl6ClVtxKRFgrbUFnWpQOU1bZQmdiTO6Pd3fB_-xd7MzG70PbvzRcosqQ8RR7Co5UEXyMwVVmF-qtDQcDzAyqzKDKDKrMSVXfuTt2aufcP69UilKm4g-uv2Mx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458750265</pqid></control><display><type>article</type><title>Intelligent Hazard-Risk Prediction Model for Train Control Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jing ; Zhang, Yan ; Han, Jiazhen ; He, Jifeng ; Sun, Junfeng ; Zhou, Tingliang</creator><creatorcontrib>Liu, Jing ; Zhang, Yan ; Han, Jiazhen ; He, Jifeng ; Sun, Junfeng ; Zhou, Tingliang</creatorcontrib><description>Although there has been substantial research in system analytics for risk assessment in traditional methods, little work has been done for safety risk prediction in communication-based train control (CBTC) system, especially intelligently predicting risk caused by the uncertainty in the system operation. Risk prediction and assessment of hazards in train control systems are vital for the safety and efficiency of urban rail transit. In this paper, we propose an intelligent hazard-risk prediction model based on a deep recurrent neural network for a new communication-mode CBTC system. First, a train-to-train communication-based train control (T2T-CBTC) system is proposed to improve the drawback of CBTC in information-exchanging mode. Then we design a risk prediction feature selection and generation method and estimate a critical function feature in the T2T-CBTC system by statistical model checking. Finally, we construct our intelligent hazard-risk prediction model based on a deep recurrent neural network using a long-short-term memory (LSTM) network. The model had excellent risk prediction classification results and performance in our experiment, even for unbalanced data set. This model consistently outperforms the deep belief network trained in Accuracy, Precision, Recall and F1-score for the hazard-risk prediction problem. Specifically, the mean accuracy is 97.2% and mean F1-score is 93.9% in overall performance of model. The improvements of our model against DBN model are 8.2% for Precision, 7% for Recall and 8% for F1-score.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2019.2945333</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Belief networks ; Communication ; communication-based train control system ; Communications systems ; Control systems ; deep learning ; Hazard assessment ; Hazards ; long-short-term memory (LSTM) ; Neural networks ; Operational hazards ; Prediction models ; Predictions ; Predictive models ; Rails ; Recall ; Recurrent neural networks ; Risk analysis ; Risk assessment ; Risk communication ; Risk prediction ; Safety ; statistical model checking ; Statistical models ; Systems architecture ; Urban rail</subject><ispartof>IEEE transactions on intelligent transportation systems, 2020-11, Vol.21 (11), p.4693-4704</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3ec7008555a094e1862cf17831f0ba252d194982a4551b89a19793de560fac973</citedby><cites>FETCH-LOGICAL-c293t-3ec7008555a094e1862cf17831f0ba252d194982a4551b89a19793de560fac973</cites><orcidid>0000-0002-8075-6283 ; 0000-0002-3478-454X ; 0000-0002-5347-8281 ; 0000-0001-7734-4897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8865446$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8865446$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Han, Jiazhen</creatorcontrib><creatorcontrib>He, Jifeng</creatorcontrib><creatorcontrib>Sun, Junfeng</creatorcontrib><creatorcontrib>Zhou, Tingliang</creatorcontrib><title>Intelligent Hazard-Risk Prediction Model for Train Control Systems</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Although there has been substantial research in system analytics for risk assessment in traditional methods, little work has been done for safety risk prediction in communication-based train control (CBTC) system, especially intelligently predicting risk caused by the uncertainty in the system operation. Risk prediction and assessment of hazards in train control systems are vital for the safety and efficiency of urban rail transit. In this paper, we propose an intelligent hazard-risk prediction model based on a deep recurrent neural network for a new communication-mode CBTC system. First, a train-to-train communication-based train control (T2T-CBTC) system is proposed to improve the drawback of CBTC in information-exchanging mode. Then we design a risk prediction feature selection and generation method and estimate a critical function feature in the T2T-CBTC system by statistical model checking. Finally, we construct our intelligent hazard-risk prediction model based on a deep recurrent neural network using a long-short-term memory (LSTM) network. The model had excellent risk prediction classification results and performance in our experiment, even for unbalanced data set. This model consistently outperforms the deep belief network trained in Accuracy, Precision, Recall and F1-score for the hazard-risk prediction problem. Specifically, the mean accuracy is 97.2% and mean F1-score is 93.9% in overall performance of model. The improvements of our model against DBN model are 8.2% for Precision, 7% for Recall and 8% for F1-score.</description><subject>Belief networks</subject><subject>Communication</subject><subject>communication-based train control system</subject><subject>Communications systems</subject><subject>Control systems</subject><subject>deep learning</subject><subject>Hazard assessment</subject><subject>Hazards</subject><subject>long-short-term memory (LSTM)</subject><subject>Neural networks</subject><subject>Operational hazards</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Rails</subject><subject>Recall</subject><subject>Recurrent neural networks</subject><subject>Risk analysis</subject><subject>Risk assessment</subject><subject>Risk communication</subject><subject>Risk prediction</subject><subject>Safety</subject><subject>statistical model checking</subject><subject>Statistical models</subject><subject>Systems architecture</subject><subject>Urban rail</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN4EvO7MSXLa5FKHc4OJ4up1yNpUOrtmJt3FfHpbNrw6P4fvPwc-Qm6BTQCYfsgX-WrCGegJ1xKFEGdkBIgqYQzS8yFzmWiG7JJcxbjptxIBRuRp0Xauaeov13Z0bn9tKJOPOn7T9-DKuuhq39JXX7qGVj7QPNi6pVPfdsE3dHWIndvGa3JR2Sa6m9Mck8_Zcz6dJ8u3l8X0cZkUXIsuEa7IGFOIaJmWDlTKiwoyJaBia8uRl6ClVtxKRFgrbUFnWpQOU1bZQmdiTO6Pd3fB_-xd7MzG70PbvzRcosqQ8RR7Co5UEXyMwVVmF-qtDQcDzAyqzKDKDKrMSVXfuTt2aufcP69UilKm4g-uv2Mx</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Liu, Jing</creator><creator>Zhang, Yan</creator><creator>Han, Jiazhen</creator><creator>He, Jifeng</creator><creator>Sun, Junfeng</creator><creator>Zhou, Tingliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8075-6283</orcidid><orcidid>https://orcid.org/0000-0002-3478-454X</orcidid><orcidid>https://orcid.org/0000-0002-5347-8281</orcidid><orcidid>https://orcid.org/0000-0001-7734-4897</orcidid></search><sort><creationdate>20201101</creationdate><title>Intelligent Hazard-Risk Prediction Model for Train Control Systems</title><author>Liu, Jing ; Zhang, Yan ; Han, Jiazhen ; He, Jifeng ; Sun, Junfeng ; Zhou, Tingliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3ec7008555a094e1862cf17831f0ba252d194982a4551b89a19793de560fac973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Belief networks</topic><topic>Communication</topic><topic>communication-based train control system</topic><topic>Communications systems</topic><topic>Control systems</topic><topic>deep learning</topic><topic>Hazard assessment</topic><topic>Hazards</topic><topic>long-short-term memory (LSTM)</topic><topic>Neural networks</topic><topic>Operational hazards</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Rails</topic><topic>Recall</topic><topic>Recurrent neural networks</topic><topic>Risk analysis</topic><topic>Risk assessment</topic><topic>Risk communication</topic><topic>Risk prediction</topic><topic>Safety</topic><topic>statistical model checking</topic><topic>Statistical models</topic><topic>Systems architecture</topic><topic>Urban rail</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Han, Jiazhen</creatorcontrib><creatorcontrib>He, Jifeng</creatorcontrib><creatorcontrib>Sun, Junfeng</creatorcontrib><creatorcontrib>Zhou, Tingliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jing</au><au>Zhang, Yan</au><au>Han, Jiazhen</au><au>He, Jifeng</au><au>Sun, Junfeng</au><au>Zhou, Tingliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Hazard-Risk Prediction Model for Train Control Systems</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>21</volume><issue>11</issue><spage>4693</spage><epage>4704</epage><pages>4693-4704</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Although there has been substantial research in system analytics for risk assessment in traditional methods, little work has been done for safety risk prediction in communication-based train control (CBTC) system, especially intelligently predicting risk caused by the uncertainty in the system operation. Risk prediction and assessment of hazards in train control systems are vital for the safety and efficiency of urban rail transit. In this paper, we propose an intelligent hazard-risk prediction model based on a deep recurrent neural network for a new communication-mode CBTC system. First, a train-to-train communication-based train control (T2T-CBTC) system is proposed to improve the drawback of CBTC in information-exchanging mode. Then we design a risk prediction feature selection and generation method and estimate a critical function feature in the T2T-CBTC system by statistical model checking. Finally, we construct our intelligent hazard-risk prediction model based on a deep recurrent neural network using a long-short-term memory (LSTM) network. The model had excellent risk prediction classification results and performance in our experiment, even for unbalanced data set. This model consistently outperforms the deep belief network trained in Accuracy, Precision, Recall and F1-score for the hazard-risk prediction problem. Specifically, the mean accuracy is 97.2% and mean F1-score is 93.9% in overall performance of model. The improvements of our model against DBN model are 8.2% for Precision, 7% for Recall and 8% for F1-score.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2019.2945333</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8075-6283</orcidid><orcidid>https://orcid.org/0000-0002-3478-454X</orcidid><orcidid>https://orcid.org/0000-0002-5347-8281</orcidid><orcidid>https://orcid.org/0000-0001-7734-4897</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2020-11, Vol.21 (11), p.4693-4704
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_8865446
source IEEE Electronic Library (IEL)
subjects Belief networks
Communication
communication-based train control system
Communications systems
Control systems
deep learning
Hazard assessment
Hazards
long-short-term memory (LSTM)
Neural networks
Operational hazards
Prediction models
Predictions
Predictive models
Rails
Recall
Recurrent neural networks
Risk analysis
Risk assessment
Risk communication
Risk prediction
Safety
statistical model checking
Statistical models
Systems architecture
Urban rail
title Intelligent Hazard-Risk Prediction Model for Train Control Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Hazard-Risk%20Prediction%20Model%20for%20Train%20Control%20Systems&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Liu,%20Jing&rft.date=2020-11-01&rft.volume=21&rft.issue=11&rft.spage=4693&rft.epage=4704&rft.pages=4693-4704&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2019.2945333&rft_dat=%3Cproquest_RIE%3E2458750265%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458750265&rft_id=info:pmid/&rft_ieee_id=8865446&rfr_iscdi=true