British Sign Language Recognition In The Wild Based On Multi-Class SVM
Developing assistive, cost-effective, non-invasive technologies to aid communication of people with hearing impairments is of prime importance in our society, in order to widen accessibility and inclusiveness. For this purpose, we have developed an intelligent vision system embedded on a smartphone...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | |
container_start_page | 81 |
container_title | |
container_volume | |
creator | Quinn, M. Olszewska, J.I. |
description | Developing assistive, cost-effective, non-invasive technologies to aid communication of people with hearing impairments is of prime importance in our society, in order to widen accessibility and inclusiveness. For this purpose, we have developed an intelligent vision system embedded on a smartphone and deployed in the wild. In particular, it integrates both computer vision methods involving Histogram of Oriented Gradients (HOG) and machine learning techniques such as multi-class Support Vector Machine (SVM) to detect and recognize British Visual Language (BSL) signs automatically. Our system was successfully tested on a real-world dataset containing 13,066 samples and shown an accuracy of over 99% with an average processing time of 170ms, thus appropriate for real-time visual signing. |
doi_str_mv | 10.15439/2019F274 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_8860003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8860003</ieee_id><sourcerecordid>8860003</sourcerecordid><originalsourceid>FETCH-LOGICAL-i238t-1ece8d7989a735fedca000214e457c5ded5934db9a1ca6cd8f9bdcef8c87377d3</originalsourceid><addsrcrecordid>eNotjs1OAjEYAKuJiYgcPHvpC6y2_dpte5SNIMkSEsGfGyntt0vNWsx2Ofj2kuBpDpNMhpA7zh64kmAfBeN2JrS8IDcGrBKgtPm8JCMBjBXKlnBNJjl_McYEl0zIckRm0z4OMe_pOraJ1i61R9cifUV_aNPJHBJdJLrZI_2IXaBTlzHQVaLLYzfEoupcznT9vrwlV43rMk7-OSZvs-dN9VLUq_mieqqLKMAMBUePJmhrrNOgGgzenWdQKu1VwKAsyLCzjntX-mAauwseG-ONBq0DjMn9uRsRcfvTx2_X_26NKU8ZgD88_Eld</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>British Sign Language Recognition In The Wild Based On Multi-Class SVM</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Quinn, M. ; Olszewska, J.I.</creator><creatorcontrib>Quinn, M. ; Olszewska, J.I.</creatorcontrib><description>Developing assistive, cost-effective, non-invasive technologies to aid communication of people with hearing impairments is of prime importance in our society, in order to widen accessibility and inclusiveness. For this purpose, we have developed an intelligent vision system embedded on a smartphone and deployed in the wild. In particular, it integrates both computer vision methods involving Histogram of Oriented Gradients (HOG) and machine learning techniques such as multi-class Support Vector Machine (SVM) to detect and recognize British Visual Language (BSL) signs automatically. Our system was successfully tested on a real-world dataset containing 13,066 samples and shown an accuracy of over 99% with an average processing time of 170ms, thus appropriate for real-time visual signing.</description><identifier>EISSN: 2300-5963</identifier><identifier>EISBN: 839523578X</identifier><identifier>EISBN: 9788395235788</identifier><identifier>DOI: 10.15439/2019F274</identifier><language>eng</language><publisher>Polish Information Processing Society -- as since 2011</publisher><subject>Assistive technology ; Gesture recognition ; Histograms ; Kernel ; Machine vision ; Support vector machines ; Visualization</subject><ispartof>2019 Federated Conference on Computer Science and Information Systems (FedCSIS), 2019, p.81-86</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,776,780,785,786,860,23909,23910,25118,27902</link.rule.ids></links><search><creatorcontrib>Quinn, M.</creatorcontrib><creatorcontrib>Olszewska, J.I.</creatorcontrib><title>British Sign Language Recognition In The Wild Based On Multi-Class SVM</title><title>2019 Federated Conference on Computer Science and Information Systems (FedCSIS)</title><addtitle>FedCSIS</addtitle><description>Developing assistive, cost-effective, non-invasive technologies to aid communication of people with hearing impairments is of prime importance in our society, in order to widen accessibility and inclusiveness. For this purpose, we have developed an intelligent vision system embedded on a smartphone and deployed in the wild. In particular, it integrates both computer vision methods involving Histogram of Oriented Gradients (HOG) and machine learning techniques such as multi-class Support Vector Machine (SVM) to detect and recognize British Visual Language (BSL) signs automatically. Our system was successfully tested on a real-world dataset containing 13,066 samples and shown an accuracy of over 99% with an average processing time of 170ms, thus appropriate for real-time visual signing.</description><subject>Assistive technology</subject><subject>Gesture recognition</subject><subject>Histograms</subject><subject>Kernel</subject><subject>Machine vision</subject><subject>Support vector machines</subject><subject>Visualization</subject><issn>2300-5963</issn><isbn>839523578X</isbn><isbn>9788395235788</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjs1OAjEYAKuJiYgcPHvpC6y2_dpte5SNIMkSEsGfGyntt0vNWsx2Ofj2kuBpDpNMhpA7zh64kmAfBeN2JrS8IDcGrBKgtPm8JCMBjBXKlnBNJjl_McYEl0zIckRm0z4OMe_pOraJ1i61R9cifUV_aNPJHBJdJLrZI_2IXaBTlzHQVaLLYzfEoupcznT9vrwlV43rMk7-OSZvs-dN9VLUq_mieqqLKMAMBUePJmhrrNOgGgzenWdQKu1VwKAsyLCzjntX-mAauwseG-ONBq0DjMn9uRsRcfvTx2_X_26NKU8ZgD88_Eld</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Quinn, M.</creator><creator>Olszewska, J.I.</creator><general>Polish Information Processing Society -- as since 2011</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20190901</creationdate><title>British Sign Language Recognition In The Wild Based On Multi-Class SVM</title><author>Quinn, M. ; Olszewska, J.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i238t-1ece8d7989a735fedca000214e457c5ded5934db9a1ca6cd8f9bdcef8c87377d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Assistive technology</topic><topic>Gesture recognition</topic><topic>Histograms</topic><topic>Kernel</topic><topic>Machine vision</topic><topic>Support vector machines</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quinn, M.</creatorcontrib><creatorcontrib>Olszewska, J.I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quinn, M.</au><au>Olszewska, J.I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>British Sign Language Recognition In The Wild Based On Multi-Class SVM</atitle><btitle>2019 Federated Conference on Computer Science and Information Systems (FedCSIS)</btitle><stitle>FedCSIS</stitle><date>2019-09-01</date><risdate>2019</risdate><spage>81</spage><epage>86</epage><pages>81-86</pages><eissn>2300-5963</eissn><eisbn>839523578X</eisbn><eisbn>9788395235788</eisbn><abstract>Developing assistive, cost-effective, non-invasive technologies to aid communication of people with hearing impairments is of prime importance in our society, in order to widen accessibility and inclusiveness. For this purpose, we have developed an intelligent vision system embedded on a smartphone and deployed in the wild. In particular, it integrates both computer vision methods involving Histogram of Oriented Gradients (HOG) and machine learning techniques such as multi-class Support Vector Machine (SVM) to detect and recognize British Visual Language (BSL) signs automatically. Our system was successfully tested on a real-world dataset containing 13,066 samples and shown an accuracy of over 99% with an average processing time of 170ms, thus appropriate for real-time visual signing.</abstract><pub>Polish Information Processing Society -- as since 2011</pub><doi>10.15439/2019F274</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2300-5963 |
ispartof | 2019 Federated Conference on Computer Science and Information Systems (FedCSIS), 2019, p.81-86 |
issn | 2300-5963 |
language | eng |
recordid | cdi_ieee_primary_8860003 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Assistive technology Gesture recognition Histograms Kernel Machine vision Support vector machines Visualization |
title | British Sign Language Recognition In The Wild Based On Multi-Class SVM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=British%20Sign%20Language%20Recognition%20In%20The%20Wild%20Based%20On%20Multi-Class%20SVM&rft.btitle=2019%20Federated%20Conference%20on%20Computer%20Science%20and%20Information%20Systems%20(FedCSIS)&rft.au=Quinn,%20M.&rft.date=2019-09-01&rft.spage=81&rft.epage=86&rft.pages=81-86&rft.eissn=2300-5963&rft_id=info:doi/10.15439/2019F274&rft_dat=%3Cieee%3E8860003%3C/ieee%3E%3Curl%3E%3C/url%3E&rft.eisbn=839523578X&rft.eisbn_list=9788395235788&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8860003&rfr_iscdi=true |