Improvement and Application of Adaptive Hybrid Cuckoo Search Algorithm

Aiming at the problem of ease of falling into local optimum and low solution quality when solving optimization problems, this paper proposes an adaptive hybrid cuckoo search (AHCS) algorithm. AHCS improves the Lévy flight method and population evolution strategy of the cuckoo search (CS) algorithm,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.145489-145515
Hauptverfasser: Cheng, Zhiwen, Wang, Jiquan, Zhang, Mingxin, Song, Haohao, Chang, Tiezhu, Bi, Yusheng, Sun, Kexin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 145515
container_issue
container_start_page 145489
container_title IEEE access
container_volume 7
creator Cheng, Zhiwen
Wang, Jiquan
Zhang, Mingxin
Song, Haohao
Chang, Tiezhu
Bi, Yusheng
Sun, Kexin
description Aiming at the problem of ease of falling into local optimum and low solution quality when solving optimization problems, this paper proposes an adaptive hybrid cuckoo search (AHCS) algorithm. AHCS improves the Lévy flight method and population evolution strategy of the cuckoo search (CS) algorithm, and introduces a mutation operation operator. Inspired by the idea of position update of particle swarm optimization (PSO) algorithm, this paper introduces the inertia weight w in the Lévy flight method of CS algorithm, and gives the new dynamic adjustment methods of parameters α and β respectively. In order to enhance the local search ability and optimization speed of the algorithm, this paper introduces the mutation operation operator, and presents a new evolution strategy of the hybrid cuckoo search algorithm. In addition, in order to verify the performance of AHCS, 30 benchmark functions and CEC 2017 optimization problems were selected. The calculation results of the 30 benchmark functions and CEC 2017 optimization problems show that compared with other algorithms, the number of winning cases of t-test values and the Friedman average ranking for AHCS are significantly better than other algorithms. Finally, AHCS and various intelligent optimization methods in the literature are used to optimize the structural parameters of the reducer and the cantilever beam. The optimization results show that the quality of AHCS solution is significantly better than other algorithms.
doi_str_mv 10.1109/ACCESS.2019.2944981
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8854797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8854797</ieee_id><doaj_id>oai_doaj_org_article_63654d3b5e724c3fb6a38884419305cb</doaj_id><sourcerecordid>2455618523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-215d79b0058d1e1eb8b02f58ac247335e976992cc232b881e0d255fdc8542ce63</originalsourceid><addsrcrecordid>eNpNkE1rwkAQhkNpoWL9BV4CPcfuZ7J7DEGrIPRge142uxNdq9l0EwX_fWMj0rnMMMz7zswTRVOMZhgj-ZYXxXyzmRGE5YxIxqTAD9GI4FQmlNP08V_9HE3ado_6EH2LZ6NosTo2wZ_hCHUX69rGedMcnNGd83Xsqzi3uuncGeLlpQzOxsXJfHsfb0AHs4vzw9YH1-2OL9FTpQ8tTG55HH0t5p_FMll_vK-KfJ0YhkSXEMxtJkuEuLAYMJSiRKTiQhvCMko5yCyVkhhDKCmFwIAs4byyRnBGDKR0HK0GX-v1XjXBHXW4KK-d-mv4sFU6dM4cQKU05czSkkNGmKFVmWoqhGAMS4q4KXuv18GrB_BzgrZTe38KdX--IozzFAtOaD9FhykTfNsGqO5bMVJX_mrgr6781Y1_r5oOKgcAd4Xo38hkRn8BbY1_Bg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455618523</pqid></control><display><type>article</type><title>Improvement and Application of Adaptive Hybrid Cuckoo Search Algorithm</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cheng, Zhiwen ; Wang, Jiquan ; Zhang, Mingxin ; Song, Haohao ; Chang, Tiezhu ; Bi, Yusheng ; Sun, Kexin</creator><creatorcontrib>Cheng, Zhiwen ; Wang, Jiquan ; Zhang, Mingxin ; Song, Haohao ; Chang, Tiezhu ; Bi, Yusheng ; Sun, Kexin</creatorcontrib><description>Aiming at the problem of ease of falling into local optimum and low solution quality when solving optimization problems, this paper proposes an adaptive hybrid cuckoo search (AHCS) algorithm. AHCS improves the Lévy flight method and population evolution strategy of the cuckoo search (CS) algorithm, and introduces a mutation operation operator. Inspired by the idea of position update of particle swarm optimization (PSO) algorithm, this paper introduces the inertia weight w in the Lévy flight method of CS algorithm, and gives the new dynamic adjustment methods of parameters α and β respectively. In order to enhance the local search ability and optimization speed of the algorithm, this paper introduces the mutation operation operator, and presents a new evolution strategy of the hybrid cuckoo search algorithm. In addition, in order to verify the performance of AHCS, 30 benchmark functions and CEC 2017 optimization problems were selected. The calculation results of the 30 benchmark functions and CEC 2017 optimization problems show that compared with other algorithms, the number of winning cases of t-test values and the Friedman average ranking for AHCS are significantly better than other algorithms. Finally, AHCS and various intelligent optimization methods in the literature are used to optimize the structural parameters of the reducer and the cantilever beam. The optimization results show that the quality of AHCS solution is significantly better than other algorithms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2944981</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; adaptive parameter adjustment ; Algorithms ; Benchmarks ; Cantilever beams ; Classification algorithms ; Convergence ; Evolution ; evolutionary strategy ; Heuristic algorithms ; Hybrid cuckoo search algorithm ; Mathematical analysis ; Mathematical model ; Mutation ; mutation operator ; Optimization ; Parameters ; Particle swarm optimization ; Search algorithms ; Sociology ; Statistics</subject><ispartof>IEEE access, 2019, Vol.7, p.145489-145515</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-215d79b0058d1e1eb8b02f58ac247335e976992cc232b881e0d255fdc8542ce63</citedby><cites>FETCH-LOGICAL-c408t-215d79b0058d1e1eb8b02f58ac247335e976992cc232b881e0d255fdc8542ce63</cites><orcidid>0000-0002-8860-5535 ; 0000-0002-1498-2602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8854797$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Cheng, Zhiwen</creatorcontrib><creatorcontrib>Wang, Jiquan</creatorcontrib><creatorcontrib>Zhang, Mingxin</creatorcontrib><creatorcontrib>Song, Haohao</creatorcontrib><creatorcontrib>Chang, Tiezhu</creatorcontrib><creatorcontrib>Bi, Yusheng</creatorcontrib><creatorcontrib>Sun, Kexin</creatorcontrib><title>Improvement and Application of Adaptive Hybrid Cuckoo Search Algorithm</title><title>IEEE access</title><addtitle>Access</addtitle><description>Aiming at the problem of ease of falling into local optimum and low solution quality when solving optimization problems, this paper proposes an adaptive hybrid cuckoo search (AHCS) algorithm. AHCS improves the Lévy flight method and population evolution strategy of the cuckoo search (CS) algorithm, and introduces a mutation operation operator. Inspired by the idea of position update of particle swarm optimization (PSO) algorithm, this paper introduces the inertia weight w in the Lévy flight method of CS algorithm, and gives the new dynamic adjustment methods of parameters α and β respectively. In order to enhance the local search ability and optimization speed of the algorithm, this paper introduces the mutation operation operator, and presents a new evolution strategy of the hybrid cuckoo search algorithm. In addition, in order to verify the performance of AHCS, 30 benchmark functions and CEC 2017 optimization problems were selected. The calculation results of the 30 benchmark functions and CEC 2017 optimization problems show that compared with other algorithms, the number of winning cases of t-test values and the Friedman average ranking for AHCS are significantly better than other algorithms. Finally, AHCS and various intelligent optimization methods in the literature are used to optimize the structural parameters of the reducer and the cantilever beam. The optimization results show that the quality of AHCS solution is significantly better than other algorithms.</description><subject>Adaptive algorithms</subject><subject>adaptive parameter adjustment</subject><subject>Algorithms</subject><subject>Benchmarks</subject><subject>Cantilever beams</subject><subject>Classification algorithms</subject><subject>Convergence</subject><subject>Evolution</subject><subject>evolutionary strategy</subject><subject>Heuristic algorithms</subject><subject>Hybrid cuckoo search algorithm</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mutation</subject><subject>mutation operator</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Search algorithms</subject><subject>Sociology</subject><subject>Statistics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1rwkAQhkNpoWL9BV4CPcfuZ7J7DEGrIPRge142uxNdq9l0EwX_fWMj0rnMMMz7zswTRVOMZhgj-ZYXxXyzmRGE5YxIxqTAD9GI4FQmlNP08V_9HE3ado_6EH2LZ6NosTo2wZ_hCHUX69rGedMcnNGd83Xsqzi3uuncGeLlpQzOxsXJfHsfb0AHs4vzw9YH1-2OL9FTpQ8tTG55HH0t5p_FMll_vK-KfJ0YhkSXEMxtJkuEuLAYMJSiRKTiQhvCMko5yCyVkhhDKCmFwIAs4byyRnBGDKR0HK0GX-v1XjXBHXW4KK-d-mv4sFU6dM4cQKU05czSkkNGmKFVmWoqhGAMS4q4KXuv18GrB_BzgrZTe38KdX--IozzFAtOaD9FhykTfNsGqO5bMVJX_mrgr6781Y1_r5oOKgcAd4Xo38hkRn8BbY1_Bg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Cheng, Zhiwen</creator><creator>Wang, Jiquan</creator><creator>Zhang, Mingxin</creator><creator>Song, Haohao</creator><creator>Chang, Tiezhu</creator><creator>Bi, Yusheng</creator><creator>Sun, Kexin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8860-5535</orcidid><orcidid>https://orcid.org/0000-0002-1498-2602</orcidid></search><sort><creationdate>2019</creationdate><title>Improvement and Application of Adaptive Hybrid Cuckoo Search Algorithm</title><author>Cheng, Zhiwen ; Wang, Jiquan ; Zhang, Mingxin ; Song, Haohao ; Chang, Tiezhu ; Bi, Yusheng ; Sun, Kexin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-215d79b0058d1e1eb8b02f58ac247335e976992cc232b881e0d255fdc8542ce63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive algorithms</topic><topic>adaptive parameter adjustment</topic><topic>Algorithms</topic><topic>Benchmarks</topic><topic>Cantilever beams</topic><topic>Classification algorithms</topic><topic>Convergence</topic><topic>Evolution</topic><topic>evolutionary strategy</topic><topic>Heuristic algorithms</topic><topic>Hybrid cuckoo search algorithm</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mutation</topic><topic>mutation operator</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Search algorithms</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Zhiwen</creatorcontrib><creatorcontrib>Wang, Jiquan</creatorcontrib><creatorcontrib>Zhang, Mingxin</creatorcontrib><creatorcontrib>Song, Haohao</creatorcontrib><creatorcontrib>Chang, Tiezhu</creatorcontrib><creatorcontrib>Bi, Yusheng</creatorcontrib><creatorcontrib>Sun, Kexin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Zhiwen</au><au>Wang, Jiquan</au><au>Zhang, Mingxin</au><au>Song, Haohao</au><au>Chang, Tiezhu</au><au>Bi, Yusheng</au><au>Sun, Kexin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement and Application of Adaptive Hybrid Cuckoo Search Algorithm</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>145489</spage><epage>145515</epage><pages>145489-145515</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Aiming at the problem of ease of falling into local optimum and low solution quality when solving optimization problems, this paper proposes an adaptive hybrid cuckoo search (AHCS) algorithm. AHCS improves the Lévy flight method and population evolution strategy of the cuckoo search (CS) algorithm, and introduces a mutation operation operator. Inspired by the idea of position update of particle swarm optimization (PSO) algorithm, this paper introduces the inertia weight w in the Lévy flight method of CS algorithm, and gives the new dynamic adjustment methods of parameters α and β respectively. In order to enhance the local search ability and optimization speed of the algorithm, this paper introduces the mutation operation operator, and presents a new evolution strategy of the hybrid cuckoo search algorithm. In addition, in order to verify the performance of AHCS, 30 benchmark functions and CEC 2017 optimization problems were selected. The calculation results of the 30 benchmark functions and CEC 2017 optimization problems show that compared with other algorithms, the number of winning cases of t-test values and the Friedman average ranking for AHCS are significantly better than other algorithms. Finally, AHCS and various intelligent optimization methods in the literature are used to optimize the structural parameters of the reducer and the cantilever beam. The optimization results show that the quality of AHCS solution is significantly better than other algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2944981</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-8860-5535</orcidid><orcidid>https://orcid.org/0000-0002-1498-2602</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.145489-145515
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8854797
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Adaptive algorithms
adaptive parameter adjustment
Algorithms
Benchmarks
Cantilever beams
Classification algorithms
Convergence
Evolution
evolutionary strategy
Heuristic algorithms
Hybrid cuckoo search algorithm
Mathematical analysis
Mathematical model
Mutation
mutation operator
Optimization
Parameters
Particle swarm optimization
Search algorithms
Sociology
Statistics
title Improvement and Application of Adaptive Hybrid Cuckoo Search Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20and%20Application%20of%20Adaptive%20Hybrid%20Cuckoo%20Search%20Algorithm&rft.jtitle=IEEE%20access&rft.au=Cheng,%20Zhiwen&rft.date=2019&rft.volume=7&rft.spage=145489&rft.epage=145515&rft.pages=145489-145515&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2944981&rft_dat=%3Cproquest_ieee_%3E2455618523%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455618523&rft_id=info:pmid/&rft_ieee_id=8854797&rft_doaj_id=oai_doaj_org_article_63654d3b5e724c3fb6a38884419305cb&rfr_iscdi=true