Dynamic Nested Tracking Graphs
This work describes an approach for the interactive visual analysis of large-scale simulations, where numerous superlevel set components and their evolution are of primary interest. The approach first derives, at simulation runtime, a specialized Cinema database that consists of images of component...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2020-01, Vol.26 (1), p.249-258 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 258 |
---|---|
container_issue | 1 |
container_start_page | 249 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 26 |
creator | Lukasczyk, Jonas Garth, Christoph Weber, Gunther H. Biedert, Tim Maciejewski, Ross Leitte, Heike |
description | This work describes an approach for the interactive visual analysis of large-scale simulations, where numerous superlevel set components and their evolution are of primary interest. The approach first derives, at simulation runtime, a specialized Cinema database that consists of images of component groups, and topological abstractions. This database is processed by a novel graph operation-based nested tracking graph algorithm (GO-NTG) that dynamically computes NTGs for component groups based on size, overlap, persistence, and level thresholds. The resulting NTGs are in turn used in a feature-centered visual analytics framework to query specific database elements and update feature parameters, facilitating flexible post hoc analysis. |
doi_str_mv | 10.1109/TVCG.2019.2934368 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8854335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8854335</ieee_id><sourcerecordid>2317726865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-2f56598773a1c6c9e2e30c30d90b52dedf1b1ab4ba365aa57870a93f73b0de333</originalsourceid><addsrcrecordid>eNpdkE1PwzAMhiMEYnz9AISEJrhw6YjjfB7RgIGE4DK4Rmmaso6tHU134N-TamMHTrbkx6_sh5BzoCMAam6nH-PJiFEwI2aQo9R75AgMh4wKKvdTT5XKmGRyQI5jnFMKnGtzSAYIQgPV_Ihc3v_Ubln54WuIXSiG09b5r6r-HE5at5rFU3JQukUMZ9t6Qt4fH6bjp-zlbfI8vnvJPAfTZawUUhitFDrw0pvAAlKPtDA0F6wIRQk5uJznDqVwTiitqDNYKsxpERDxhFxtcpvYVTb6qgt-5pu6Dr6zIIxSTCToZgOt2uZ7ne61yyr6sFi4OjTraBmmB5Ea3qPX_9B5s27r9EKiIKVJLXsKNpRvmxjbUNpVWy1d-2OB2t6w7Q3b3rDdGk47l9vkdb4MxW7jT2kCLjZAFULYjbUWHFHgLy83e6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317726865</pqid></control><display><type>article</type><title>Dynamic Nested Tracking Graphs</title><source>IEEE Electronic Library (IEL)</source><creator>Lukasczyk, Jonas ; Garth, Christoph ; Weber, Gunther H. ; Biedert, Tim ; Maciejewski, Ross ; Leitte, Heike</creator><creatorcontrib>Lukasczyk, Jonas ; Garth, Christoph ; Weber, Gunther H. ; Biedert, Tim ; Maciejewski, Ross ; Leitte, Heike ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>This work describes an approach for the interactive visual analysis of large-scale simulations, where numerous superlevel set components and their evolution are of primary interest. The approach first derives, at simulation runtime, a specialized Cinema database that consists of images of component groups, and topological abstractions. This database is processed by a novel graph operation-based nested tracking graph algorithm (GO-NTG) that dynamically computes NTGs for component groups based on size, overlap, persistence, and level thresholds. The resulting NTGs are in turn used in a feature-centered visual analytics framework to query specific database elements and update feature parameters, facilitating flexible post hoc analysis.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2019.2934368</identifier><identifier>PMID: 31581084</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Analytical models ; Computational modeling ; Computer simulation ; Feature Tracking ; Image Databases ; MATHEMATICS AND COMPUTING ; Motion pictures ; Nested Tracking Graphs ; Post Hoc Visual Analytics ; Task analysis ; Topological Data Analysis ; Tracking ; Vegetation ; Visual analytics</subject><ispartof>IEEE transactions on visualization and computer graphics, 2020-01, Vol.26 (1), p.249-258</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-2f56598773a1c6c9e2e30c30d90b52dedf1b1ab4ba365aa57870a93f73b0de333</citedby><cites>FETCH-LOGICAL-c419t-2f56598773a1c6c9e2e30c30d90b52dedf1b1ab4ba365aa57870a93f73b0de333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8854335$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8854335$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31581084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1597725$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lukasczyk, Jonas</creatorcontrib><creatorcontrib>Garth, Christoph</creatorcontrib><creatorcontrib>Weber, Gunther H.</creatorcontrib><creatorcontrib>Biedert, Tim</creatorcontrib><creatorcontrib>Maciejewski, Ross</creatorcontrib><creatorcontrib>Leitte, Heike</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Dynamic Nested Tracking Graphs</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>This work describes an approach for the interactive visual analysis of large-scale simulations, where numerous superlevel set components and their evolution are of primary interest. The approach first derives, at simulation runtime, a specialized Cinema database that consists of images of component groups, and topological abstractions. This database is processed by a novel graph operation-based nested tracking graph algorithm (GO-NTG) that dynamically computes NTGs for component groups based on size, overlap, persistence, and level thresholds. The resulting NTGs are in turn used in a feature-centered visual analytics framework to query specific database elements and update feature parameters, facilitating flexible post hoc analysis.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Feature Tracking</subject><subject>Image Databases</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Motion pictures</subject><subject>Nested Tracking Graphs</subject><subject>Post Hoc Visual Analytics</subject><subject>Task analysis</subject><subject>Topological Data Analysis</subject><subject>Tracking</subject><subject>Vegetation</subject><subject>Visual analytics</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwzAMhiMEYnz9AISEJrhw6YjjfB7RgIGE4DK4Rmmaso6tHU134N-TamMHTrbkx6_sh5BzoCMAam6nH-PJiFEwI2aQo9R75AgMh4wKKvdTT5XKmGRyQI5jnFMKnGtzSAYIQgPV_Ihc3v_Ubln54WuIXSiG09b5r6r-HE5at5rFU3JQukUMZ9t6Qt4fH6bjp-zlbfI8vnvJPAfTZawUUhitFDrw0pvAAlKPtDA0F6wIRQk5uJznDqVwTiitqDNYKsxpERDxhFxtcpvYVTb6qgt-5pu6Dr6zIIxSTCToZgOt2uZ7ne61yyr6sFi4OjTraBmmB5Ea3qPX_9B5s27r9EKiIKVJLXsKNpRvmxjbUNpVWy1d-2OB2t6w7Q3b3rDdGk47l9vkdb4MxW7jT2kCLjZAFULYjbUWHFHgLy83e6Q</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Lukasczyk, Jonas</creator><creator>Garth, Christoph</creator><creator>Weber, Gunther H.</creator><creator>Biedert, Tim</creator><creator>Maciejewski, Ross</creator><creator>Leitte, Heike</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20200101</creationdate><title>Dynamic Nested Tracking Graphs</title><author>Lukasczyk, Jonas ; Garth, Christoph ; Weber, Gunther H. ; Biedert, Tim ; Maciejewski, Ross ; Leitte, Heike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-2f56598773a1c6c9e2e30c30d90b52dedf1b1ab4ba365aa57870a93f73b0de333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Feature Tracking</topic><topic>Image Databases</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Motion pictures</topic><topic>Nested Tracking Graphs</topic><topic>Post Hoc Visual Analytics</topic><topic>Task analysis</topic><topic>Topological Data Analysis</topic><topic>Tracking</topic><topic>Vegetation</topic><topic>Visual analytics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lukasczyk, Jonas</creatorcontrib><creatorcontrib>Garth, Christoph</creatorcontrib><creatorcontrib>Weber, Gunther H.</creatorcontrib><creatorcontrib>Biedert, Tim</creatorcontrib><creatorcontrib>Maciejewski, Ross</creatorcontrib><creatorcontrib>Leitte, Heike</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lukasczyk, Jonas</au><au>Garth, Christoph</au><au>Weber, Gunther H.</au><au>Biedert, Tim</au><au>Maciejewski, Ross</au><au>Leitte, Heike</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Nested Tracking Graphs</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>26</volume><issue>1</issue><spage>249</spage><epage>258</epage><pages>249-258</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>This work describes an approach for the interactive visual analysis of large-scale simulations, where numerous superlevel set components and their evolution are of primary interest. The approach first derives, at simulation runtime, a specialized Cinema database that consists of images of component groups, and topological abstractions. This database is processed by a novel graph operation-based nested tracking graph algorithm (GO-NTG) that dynamically computes NTGs for component groups based on size, overlap, persistence, and level thresholds. The resulting NTGs are in turn used in a feature-centered visual analytics framework to query specific database elements and update feature parameters, facilitating flexible post hoc analysis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31581084</pmid><doi>10.1109/TVCG.2019.2934368</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2020-01, Vol.26 (1), p.249-258 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_ieee_primary_8854335 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Analytical models Computational modeling Computer simulation Feature Tracking Image Databases MATHEMATICS AND COMPUTING Motion pictures Nested Tracking Graphs Post Hoc Visual Analytics Task analysis Topological Data Analysis Tracking Vegetation Visual analytics |
title | Dynamic Nested Tracking Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A54%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Nested%20Tracking%20Graphs&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Lukasczyk,%20Jonas&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-01-01&rft.volume=26&rft.issue=1&rft.spage=249&rft.epage=258&rft.pages=249-258&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2019.2934368&rft_dat=%3Cproquest_RIE%3E2317726865%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317726865&rft_id=info:pmid/31581084&rft_ieee_id=8854335&rfr_iscdi=true |