Dynamic Nested Tracking Graphs

This work describes an approach for the interactive visual analysis of large-scale simulations, where numerous superlevel set components and their evolution are of primary interest. The approach first derives, at simulation runtime, a specialized Cinema database that consists of images of component...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2020-01, Vol.26 (1), p.249-258
Hauptverfasser: Lukasczyk, Jonas, Garth, Christoph, Weber, Gunther H., Biedert, Tim, Maciejewski, Ross, Leitte, Heike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue 1
container_start_page 249
container_title IEEE transactions on visualization and computer graphics
container_volume 26
creator Lukasczyk, Jonas
Garth, Christoph
Weber, Gunther H.
Biedert, Tim
Maciejewski, Ross
Leitte, Heike
description This work describes an approach for the interactive visual analysis of large-scale simulations, where numerous superlevel set components and their evolution are of primary interest. The approach first derives, at simulation runtime, a specialized Cinema database that consists of images of component groups, and topological abstractions. This database is processed by a novel graph operation-based nested tracking graph algorithm (GO-NTG) that dynamically computes NTGs for component groups based on size, overlap, persistence, and level thresholds. The resulting NTGs are in turn used in a feature-centered visual analytics framework to query specific database elements and update feature parameters, facilitating flexible post hoc analysis.
doi_str_mv 10.1109/TVCG.2019.2934368
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8854335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8854335</ieee_id><sourcerecordid>2317726865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-2f56598773a1c6c9e2e30c30d90b52dedf1b1ab4ba365aa57870a93f73b0de333</originalsourceid><addsrcrecordid>eNpdkE1PwzAMhiMEYnz9AISEJrhw6YjjfB7RgIGE4DK4Rmmaso6tHU134N-TamMHTrbkx6_sh5BzoCMAam6nH-PJiFEwI2aQo9R75AgMh4wKKvdTT5XKmGRyQI5jnFMKnGtzSAYIQgPV_Ihc3v_Ubln54WuIXSiG09b5r6r-HE5at5rFU3JQukUMZ9t6Qt4fH6bjp-zlbfI8vnvJPAfTZawUUhitFDrw0pvAAlKPtDA0F6wIRQk5uJznDqVwTiitqDNYKsxpERDxhFxtcpvYVTb6qgt-5pu6Dr6zIIxSTCToZgOt2uZ7ne61yyr6sFi4OjTraBmmB5Ea3qPX_9B5s27r9EKiIKVJLXsKNpRvmxjbUNpVWy1d-2OB2t6w7Q3b3rDdGk47l9vkdb4MxW7jT2kCLjZAFULYjbUWHFHgLy83e6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317726865</pqid></control><display><type>article</type><title>Dynamic Nested Tracking Graphs</title><source>IEEE Electronic Library (IEL)</source><creator>Lukasczyk, Jonas ; Garth, Christoph ; Weber, Gunther H. ; Biedert, Tim ; Maciejewski, Ross ; Leitte, Heike</creator><creatorcontrib>Lukasczyk, Jonas ; Garth, Christoph ; Weber, Gunther H. ; Biedert, Tim ; Maciejewski, Ross ; Leitte, Heike ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>This work describes an approach for the interactive visual analysis of large-scale simulations, where numerous superlevel set components and their evolution are of primary interest. The approach first derives, at simulation runtime, a specialized Cinema database that consists of images of component groups, and topological abstractions. This database is processed by a novel graph operation-based nested tracking graph algorithm (GO-NTG) that dynamically computes NTGs for component groups based on size, overlap, persistence, and level thresholds. The resulting NTGs are in turn used in a feature-centered visual analytics framework to query specific database elements and update feature parameters, facilitating flexible post hoc analysis.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2019.2934368</identifier><identifier>PMID: 31581084</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Analytical models ; Computational modeling ; Computer simulation ; Feature Tracking ; Image Databases ; MATHEMATICS AND COMPUTING ; Motion pictures ; Nested Tracking Graphs ; Post Hoc Visual Analytics ; Task analysis ; Topological Data Analysis ; Tracking ; Vegetation ; Visual analytics</subject><ispartof>IEEE transactions on visualization and computer graphics, 2020-01, Vol.26 (1), p.249-258</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-2f56598773a1c6c9e2e30c30d90b52dedf1b1ab4ba365aa57870a93f73b0de333</citedby><cites>FETCH-LOGICAL-c419t-2f56598773a1c6c9e2e30c30d90b52dedf1b1ab4ba365aa57870a93f73b0de333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8854335$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8854335$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31581084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1597725$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lukasczyk, Jonas</creatorcontrib><creatorcontrib>Garth, Christoph</creatorcontrib><creatorcontrib>Weber, Gunther H.</creatorcontrib><creatorcontrib>Biedert, Tim</creatorcontrib><creatorcontrib>Maciejewski, Ross</creatorcontrib><creatorcontrib>Leitte, Heike</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Dynamic Nested Tracking Graphs</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>This work describes an approach for the interactive visual analysis of large-scale simulations, where numerous superlevel set components and their evolution are of primary interest. The approach first derives, at simulation runtime, a specialized Cinema database that consists of images of component groups, and topological abstractions. This database is processed by a novel graph operation-based nested tracking graph algorithm (GO-NTG) that dynamically computes NTGs for component groups based on size, overlap, persistence, and level thresholds. The resulting NTGs are in turn used in a feature-centered visual analytics framework to query specific database elements and update feature parameters, facilitating flexible post hoc analysis.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Feature Tracking</subject><subject>Image Databases</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Motion pictures</subject><subject>Nested Tracking Graphs</subject><subject>Post Hoc Visual Analytics</subject><subject>Task analysis</subject><subject>Topological Data Analysis</subject><subject>Tracking</subject><subject>Vegetation</subject><subject>Visual analytics</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwzAMhiMEYnz9AISEJrhw6YjjfB7RgIGE4DK4Rmmaso6tHU134N-TamMHTrbkx6_sh5BzoCMAam6nH-PJiFEwI2aQo9R75AgMh4wKKvdTT5XKmGRyQI5jnFMKnGtzSAYIQgPV_Ihc3v_Ubln54WuIXSiG09b5r6r-HE5at5rFU3JQukUMZ9t6Qt4fH6bjp-zlbfI8vnvJPAfTZawUUhitFDrw0pvAAlKPtDA0F6wIRQk5uJznDqVwTiitqDNYKsxpERDxhFxtcpvYVTb6qgt-5pu6Dr6zIIxSTCToZgOt2uZ7ne61yyr6sFi4OjTraBmmB5Ea3qPX_9B5s27r9EKiIKVJLXsKNpRvmxjbUNpVWy1d-2OB2t6w7Q3b3rDdGk47l9vkdb4MxW7jT2kCLjZAFULYjbUWHFHgLy83e6Q</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Lukasczyk, Jonas</creator><creator>Garth, Christoph</creator><creator>Weber, Gunther H.</creator><creator>Biedert, Tim</creator><creator>Maciejewski, Ross</creator><creator>Leitte, Heike</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20200101</creationdate><title>Dynamic Nested Tracking Graphs</title><author>Lukasczyk, Jonas ; Garth, Christoph ; Weber, Gunther H. ; Biedert, Tim ; Maciejewski, Ross ; Leitte, Heike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-2f56598773a1c6c9e2e30c30d90b52dedf1b1ab4ba365aa57870a93f73b0de333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Feature Tracking</topic><topic>Image Databases</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Motion pictures</topic><topic>Nested Tracking Graphs</topic><topic>Post Hoc Visual Analytics</topic><topic>Task analysis</topic><topic>Topological Data Analysis</topic><topic>Tracking</topic><topic>Vegetation</topic><topic>Visual analytics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lukasczyk, Jonas</creatorcontrib><creatorcontrib>Garth, Christoph</creatorcontrib><creatorcontrib>Weber, Gunther H.</creatorcontrib><creatorcontrib>Biedert, Tim</creatorcontrib><creatorcontrib>Maciejewski, Ross</creatorcontrib><creatorcontrib>Leitte, Heike</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lukasczyk, Jonas</au><au>Garth, Christoph</au><au>Weber, Gunther H.</au><au>Biedert, Tim</au><au>Maciejewski, Ross</au><au>Leitte, Heike</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Nested Tracking Graphs</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>26</volume><issue>1</issue><spage>249</spage><epage>258</epage><pages>249-258</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>This work describes an approach for the interactive visual analysis of large-scale simulations, where numerous superlevel set components and their evolution are of primary interest. The approach first derives, at simulation runtime, a specialized Cinema database that consists of images of component groups, and topological abstractions. This database is processed by a novel graph operation-based nested tracking graph algorithm (GO-NTG) that dynamically computes NTGs for component groups based on size, overlap, persistence, and level thresholds. The resulting NTGs are in turn used in a feature-centered visual analytics framework to query specific database elements and update feature parameters, facilitating flexible post hoc analysis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31581084</pmid><doi>10.1109/TVCG.2019.2934368</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2020-01, Vol.26 (1), p.249-258
issn 1077-2626
1941-0506
language eng
recordid cdi_ieee_primary_8854335
source IEEE Electronic Library (IEL)
subjects Algorithms
Analytical models
Computational modeling
Computer simulation
Feature Tracking
Image Databases
MATHEMATICS AND COMPUTING
Motion pictures
Nested Tracking Graphs
Post Hoc Visual Analytics
Task analysis
Topological Data Analysis
Tracking
Vegetation
Visual analytics
title Dynamic Nested Tracking Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A54%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Nested%20Tracking%20Graphs&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Lukasczyk,%20Jonas&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-01-01&rft.volume=26&rft.issue=1&rft.spage=249&rft.epage=258&rft.pages=249-258&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2019.2934368&rft_dat=%3Cproquest_RIE%3E2317726865%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317726865&rft_id=info:pmid/31581084&rft_ieee_id=8854335&rfr_iscdi=true