Prediction of Significant Wave Heights Based on CS-BP Model in the South China Sea

Forecasting the significant wave heights (Hs) is indispensable in HS-related engineering studies and is exceedingly important in the assessment of wave energy in future. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to Hs has always been a v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.147490-147500
Hauptverfasser: Yang, Shaobo, Xia, Tianliang, Zhang, Zhenquan, Zheng, Chongwei, Li, Xingfei, Li, Hongyu, Xu, Jianjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147500
container_issue
container_start_page 147490
container_title IEEE access
container_volume 7
creator Yang, Shaobo
Xia, Tianliang
Zhang, Zhenquan
Zheng, Chongwei
Li, Xingfei
Li, Hongyu
Xu, Jianjun
description Forecasting the significant wave heights (Hs) is indispensable in HS-related engineering studies and is exceedingly important in the assessment of wave energy in future. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to Hs has always been a vital research subject. In this paper, an optimized hybrid method based on the back propagation neural network (BP) and the cuckoo search algorithm (CS) is proposed to forecast the Hs in the South China Sea. This approach employs the CS as an intelligent optimization algorithm to optimize the parameters of the BP model, which develop a hybrid model that is suit for the data set, reducing the forecasting errors. The proposed method is subsequently tested based on nine prediction points selected in the South China Sea, where the proposed hybrid model is proved to perform effectively and steadily.
doi_str_mv 10.1109/ACCESS.2019.2944422
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8852683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8852683</ieee_id><doaj_id>oai_doaj_org_article_a61939a51f364828a8e0461bae5f4b77</doaj_id><sourcerecordid>2455598770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-672a13b0998bc388743c0c4d7f358b11244e8269f2cb230b3a565ee8dd46088d3</originalsourceid><addsrcrecordid>eNpNkU9LxDAQxYsoKLqfYC8Bz13zv5OjFnUFRbGKx5Cm090sa6NpV_DbW62Ic5lheO_NwC_L5owuGKPm7LwsL6tqwSkzC26klJzvZUecaZMLJfT-v_kwm_X9ho4F40oVR9njQ8Im-CHEjsSWVGHVhTZ41w3kxX0gWWJYrYeeXLgeGzKKyiq_eCB3scEtCR0Z1kiquBvWpFyHzpEK3Ul20Lptj7Pffpw9X10-lcv89v76pjy_zb2kMOS64I6JmhoDtRcAhRSeetkUrVBQM8alRODatNzXXNBaOKUVIjSN1BSgEcfZzZTbRLexbym8uvRpowv2ZxHTyro0BL9F6zQzwjjFWqElcHCAVGpWO1StrItizDqdst5SfN9hP9hN3KVufN9yqZQyUBR0VIlJ5VPs-4Tt31VG7TcLO7Gw3yzsL4vRNZ9cARH_HACKaxDiCwalgYA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455598770</pqid></control><display><type>article</type><title>Prediction of Significant Wave Heights Based on CS-BP Model in the South China Sea</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yang, Shaobo ; Xia, Tianliang ; Zhang, Zhenquan ; Zheng, Chongwei ; Li, Xingfei ; Li, Hongyu ; Xu, Jianjun</creator><creatorcontrib>Yang, Shaobo ; Xia, Tianliang ; Zhang, Zhenquan ; Zheng, Chongwei ; Li, Xingfei ; Li, Hongyu ; Xu, Jianjun</creatorcontrib><description>Forecasting the significant wave heights (Hs) is indispensable in HS-related engineering studies and is exceedingly important in the assessment of wave energy in future. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to Hs has always been a vital research subject. In this paper, an optimized hybrid method based on the back propagation neural network (BP) and the cuckoo search algorithm (CS) is proposed to forecast the Hs in the South China Sea. This approach employs the CS as an intelligent optimization algorithm to optimize the parameters of the BP model, which develop a hybrid model that is suit for the data set, reducing the forecasting errors. The proposed method is subsequently tested based on nine prediction points selected in the South China Sea, where the proposed hybrid model is proved to perform effectively and steadily.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2944422</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autoregressive processes ; Back propagation networks ; Clean energy ; CS-BP ; Forecasting ; Mathematical model ; Neural networks ; Oceans ; Optimization ; predication performance ; Prediction algorithms ; Predictive models ; Search algorithms ; significant wave heights ; South China sea ; Wave power ; Wind</subject><ispartof>IEEE access, 2019, Vol.7, p.147490-147500</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-672a13b0998bc388743c0c4d7f358b11244e8269f2cb230b3a565ee8dd46088d3</citedby><cites>FETCH-LOGICAL-c408t-672a13b0998bc388743c0c4d7f358b11244e8269f2cb230b3a565ee8dd46088d3</cites><orcidid>0000-0002-9260-1836 ; 0000-0002-1156-0201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8852683$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Yang, Shaobo</creatorcontrib><creatorcontrib>Xia, Tianliang</creatorcontrib><creatorcontrib>Zhang, Zhenquan</creatorcontrib><creatorcontrib>Zheng, Chongwei</creatorcontrib><creatorcontrib>Li, Xingfei</creatorcontrib><creatorcontrib>Li, Hongyu</creatorcontrib><creatorcontrib>Xu, Jianjun</creatorcontrib><title>Prediction of Significant Wave Heights Based on CS-BP Model in the South China Sea</title><title>IEEE access</title><addtitle>Access</addtitle><description>Forecasting the significant wave heights (Hs) is indispensable in HS-related engineering studies and is exceedingly important in the assessment of wave energy in future. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to Hs has always been a vital research subject. In this paper, an optimized hybrid method based on the back propagation neural network (BP) and the cuckoo search algorithm (CS) is proposed to forecast the Hs in the South China Sea. This approach employs the CS as an intelligent optimization algorithm to optimize the parameters of the BP model, which develop a hybrid model that is suit for the data set, reducing the forecasting errors. The proposed method is subsequently tested based on nine prediction points selected in the South China Sea, where the proposed hybrid model is proved to perform effectively and steadily.</description><subject>Autoregressive processes</subject><subject>Back propagation networks</subject><subject>Clean energy</subject><subject>CS-BP</subject><subject>Forecasting</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>Oceans</subject><subject>Optimization</subject><subject>predication performance</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Search algorithms</subject><subject>significant wave heights</subject><subject>South China sea</subject><subject>Wave power</subject><subject>Wind</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LxDAQxYsoKLqfYC8Bz13zv5OjFnUFRbGKx5Cm090sa6NpV_DbW62Ic5lheO_NwC_L5owuGKPm7LwsL6tqwSkzC26klJzvZUecaZMLJfT-v_kwm_X9ho4F40oVR9njQ8Im-CHEjsSWVGHVhTZ41w3kxX0gWWJYrYeeXLgeGzKKyiq_eCB3scEtCR0Z1kiquBvWpFyHzpEK3Ul20Lptj7Pffpw9X10-lcv89v76pjy_zb2kMOS64I6JmhoDtRcAhRSeetkUrVBQM8alRODatNzXXNBaOKUVIjSN1BSgEcfZzZTbRLexbym8uvRpowv2ZxHTyro0BL9F6zQzwjjFWqElcHCAVGpWO1StrItizDqdst5SfN9hP9hN3KVufN9yqZQyUBR0VIlJ5VPs-4Tt31VG7TcLO7Gw3yzsL4vRNZ9cARH_HACKaxDiCwalgYA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Yang, Shaobo</creator><creator>Xia, Tianliang</creator><creator>Zhang, Zhenquan</creator><creator>Zheng, Chongwei</creator><creator>Li, Xingfei</creator><creator>Li, Hongyu</creator><creator>Xu, Jianjun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9260-1836</orcidid><orcidid>https://orcid.org/0000-0002-1156-0201</orcidid></search><sort><creationdate>2019</creationdate><title>Prediction of Significant Wave Heights Based on CS-BP Model in the South China Sea</title><author>Yang, Shaobo ; Xia, Tianliang ; Zhang, Zhenquan ; Zheng, Chongwei ; Li, Xingfei ; Li, Hongyu ; Xu, Jianjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-672a13b0998bc388743c0c4d7f358b11244e8269f2cb230b3a565ee8dd46088d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autoregressive processes</topic><topic>Back propagation networks</topic><topic>Clean energy</topic><topic>CS-BP</topic><topic>Forecasting</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>Oceans</topic><topic>Optimization</topic><topic>predication performance</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Search algorithms</topic><topic>significant wave heights</topic><topic>South China sea</topic><topic>Wave power</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shaobo</creatorcontrib><creatorcontrib>Xia, Tianliang</creatorcontrib><creatorcontrib>Zhang, Zhenquan</creatorcontrib><creatorcontrib>Zheng, Chongwei</creatorcontrib><creatorcontrib>Li, Xingfei</creatorcontrib><creatorcontrib>Li, Hongyu</creatorcontrib><creatorcontrib>Xu, Jianjun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Shaobo</au><au>Xia, Tianliang</au><au>Zhang, Zhenquan</au><au>Zheng, Chongwei</au><au>Li, Xingfei</au><au>Li, Hongyu</au><au>Xu, Jianjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Significant Wave Heights Based on CS-BP Model in the South China Sea</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>147490</spage><epage>147500</epage><pages>147490-147500</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Forecasting the significant wave heights (Hs) is indispensable in HS-related engineering studies and is exceedingly important in the assessment of wave energy in future. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to Hs has always been a vital research subject. In this paper, an optimized hybrid method based on the back propagation neural network (BP) and the cuckoo search algorithm (CS) is proposed to forecast the Hs in the South China Sea. This approach employs the CS as an intelligent optimization algorithm to optimize the parameters of the BP model, which develop a hybrid model that is suit for the data set, reducing the forecasting errors. The proposed method is subsequently tested based on nine prediction points selected in the South China Sea, where the proposed hybrid model is proved to perform effectively and steadily.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2944422</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9260-1836</orcidid><orcidid>https://orcid.org/0000-0002-1156-0201</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.147490-147500
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8852683
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Autoregressive processes
Back propagation networks
Clean energy
CS-BP
Forecasting
Mathematical model
Neural networks
Oceans
Optimization
predication performance
Prediction algorithms
Predictive models
Search algorithms
significant wave heights
South China sea
Wave power
Wind
title Prediction of Significant Wave Heights Based on CS-BP Model in the South China Sea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Significant%20Wave%20Heights%20Based%20on%20CS-BP%20Model%20in%20the%20South%20China%20Sea&rft.jtitle=IEEE%20access&rft.au=Yang,%20Shaobo&rft.date=2019&rft.volume=7&rft.spage=147490&rft.epage=147500&rft.pages=147490-147500&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2944422&rft_dat=%3Cproquest_ieee_%3E2455598770%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455598770&rft_id=info:pmid/&rft_ieee_id=8852683&rft_doaj_id=oai_doaj_org_article_a61939a51f364828a8e0461bae5f4b77&rfr_iscdi=true