Prediction of Significant Wave Heights Based on CS-BP Model in the South China Sea
Forecasting the significant wave heights (Hs) is indispensable in HS-related engineering studies and is exceedingly important in the assessment of wave energy in future. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to Hs has always been a v...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.147490-147500 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147500 |
---|---|
container_issue | |
container_start_page | 147490 |
container_title | IEEE access |
container_volume | 7 |
creator | Yang, Shaobo Xia, Tianliang Zhang, Zhenquan Zheng, Chongwei Li, Xingfei Li, Hongyu Xu, Jianjun |
description | Forecasting the significant wave heights (Hs) is indispensable in HS-related engineering studies and is exceedingly important in the assessment of wave energy in future. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to Hs has always been a vital research subject. In this paper, an optimized hybrid method based on the back propagation neural network (BP) and the cuckoo search algorithm (CS) is proposed to forecast the Hs in the South China Sea. This approach employs the CS as an intelligent optimization algorithm to optimize the parameters of the BP model, which develop a hybrid model that is suit for the data set, reducing the forecasting errors. The proposed method is subsequently tested based on nine prediction points selected in the South China Sea, where the proposed hybrid model is proved to perform effectively and steadily. |
doi_str_mv | 10.1109/ACCESS.2019.2944422 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8852683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8852683</ieee_id><doaj_id>oai_doaj_org_article_a61939a51f364828a8e0461bae5f4b77</doaj_id><sourcerecordid>2455598770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-672a13b0998bc388743c0c4d7f358b11244e8269f2cb230b3a565ee8dd46088d3</originalsourceid><addsrcrecordid>eNpNkU9LxDAQxYsoKLqfYC8Bz13zv5OjFnUFRbGKx5Cm090sa6NpV_DbW62Ic5lheO_NwC_L5owuGKPm7LwsL6tqwSkzC26klJzvZUecaZMLJfT-v_kwm_X9ho4F40oVR9njQ8Im-CHEjsSWVGHVhTZ41w3kxX0gWWJYrYeeXLgeGzKKyiq_eCB3scEtCR0Z1kiquBvWpFyHzpEK3Ul20Lptj7Pffpw9X10-lcv89v76pjy_zb2kMOS64I6JmhoDtRcAhRSeetkUrVBQM8alRODatNzXXNBaOKUVIjSN1BSgEcfZzZTbRLexbym8uvRpowv2ZxHTyro0BL9F6zQzwjjFWqElcHCAVGpWO1StrItizDqdst5SfN9hP9hN3KVufN9yqZQyUBR0VIlJ5VPs-4Tt31VG7TcLO7Gw3yzsL4vRNZ9cARH_HACKaxDiCwalgYA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455598770</pqid></control><display><type>article</type><title>Prediction of Significant Wave Heights Based on CS-BP Model in the South China Sea</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yang, Shaobo ; Xia, Tianliang ; Zhang, Zhenquan ; Zheng, Chongwei ; Li, Xingfei ; Li, Hongyu ; Xu, Jianjun</creator><creatorcontrib>Yang, Shaobo ; Xia, Tianliang ; Zhang, Zhenquan ; Zheng, Chongwei ; Li, Xingfei ; Li, Hongyu ; Xu, Jianjun</creatorcontrib><description>Forecasting the significant wave heights (Hs) is indispensable in HS-related engineering studies and is exceedingly important in the assessment of wave energy in future. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to Hs has always been a vital research subject. In this paper, an optimized hybrid method based on the back propagation neural network (BP) and the cuckoo search algorithm (CS) is proposed to forecast the Hs in the South China Sea. This approach employs the CS as an intelligent optimization algorithm to optimize the parameters of the BP model, which develop a hybrid model that is suit for the data set, reducing the forecasting errors. The proposed method is subsequently tested based on nine prediction points selected in the South China Sea, where the proposed hybrid model is proved to perform effectively and steadily.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2944422</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autoregressive processes ; Back propagation networks ; Clean energy ; CS-BP ; Forecasting ; Mathematical model ; Neural networks ; Oceans ; Optimization ; predication performance ; Prediction algorithms ; Predictive models ; Search algorithms ; significant wave heights ; South China sea ; Wave power ; Wind</subject><ispartof>IEEE access, 2019, Vol.7, p.147490-147500</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-672a13b0998bc388743c0c4d7f358b11244e8269f2cb230b3a565ee8dd46088d3</citedby><cites>FETCH-LOGICAL-c408t-672a13b0998bc388743c0c4d7f358b11244e8269f2cb230b3a565ee8dd46088d3</cites><orcidid>0000-0002-9260-1836 ; 0000-0002-1156-0201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8852683$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Yang, Shaobo</creatorcontrib><creatorcontrib>Xia, Tianliang</creatorcontrib><creatorcontrib>Zhang, Zhenquan</creatorcontrib><creatorcontrib>Zheng, Chongwei</creatorcontrib><creatorcontrib>Li, Xingfei</creatorcontrib><creatorcontrib>Li, Hongyu</creatorcontrib><creatorcontrib>Xu, Jianjun</creatorcontrib><title>Prediction of Significant Wave Heights Based on CS-BP Model in the South China Sea</title><title>IEEE access</title><addtitle>Access</addtitle><description>Forecasting the significant wave heights (Hs) is indispensable in HS-related engineering studies and is exceedingly important in the assessment of wave energy in future. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to Hs has always been a vital research subject. In this paper, an optimized hybrid method based on the back propagation neural network (BP) and the cuckoo search algorithm (CS) is proposed to forecast the Hs in the South China Sea. This approach employs the CS as an intelligent optimization algorithm to optimize the parameters of the BP model, which develop a hybrid model that is suit for the data set, reducing the forecasting errors. The proposed method is subsequently tested based on nine prediction points selected in the South China Sea, where the proposed hybrid model is proved to perform effectively and steadily.</description><subject>Autoregressive processes</subject><subject>Back propagation networks</subject><subject>Clean energy</subject><subject>CS-BP</subject><subject>Forecasting</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>Oceans</subject><subject>Optimization</subject><subject>predication performance</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Search algorithms</subject><subject>significant wave heights</subject><subject>South China sea</subject><subject>Wave power</subject><subject>Wind</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LxDAQxYsoKLqfYC8Bz13zv5OjFnUFRbGKx5Cm090sa6NpV_DbW62Ic5lheO_NwC_L5owuGKPm7LwsL6tqwSkzC26klJzvZUecaZMLJfT-v_kwm_X9ho4F40oVR9njQ8Im-CHEjsSWVGHVhTZ41w3kxX0gWWJYrYeeXLgeGzKKyiq_eCB3scEtCR0Z1kiquBvWpFyHzpEK3Ul20Lptj7Pffpw9X10-lcv89v76pjy_zb2kMOS64I6JmhoDtRcAhRSeetkUrVBQM8alRODatNzXXNBaOKUVIjSN1BSgEcfZzZTbRLexbym8uvRpowv2ZxHTyro0BL9F6zQzwjjFWqElcHCAVGpWO1StrItizDqdst5SfN9hP9hN3KVufN9yqZQyUBR0VIlJ5VPs-4Tt31VG7TcLO7Gw3yzsL4vRNZ9cARH_HACKaxDiCwalgYA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Yang, Shaobo</creator><creator>Xia, Tianliang</creator><creator>Zhang, Zhenquan</creator><creator>Zheng, Chongwei</creator><creator>Li, Xingfei</creator><creator>Li, Hongyu</creator><creator>Xu, Jianjun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9260-1836</orcidid><orcidid>https://orcid.org/0000-0002-1156-0201</orcidid></search><sort><creationdate>2019</creationdate><title>Prediction of Significant Wave Heights Based on CS-BP Model in the South China Sea</title><author>Yang, Shaobo ; Xia, Tianliang ; Zhang, Zhenquan ; Zheng, Chongwei ; Li, Xingfei ; Li, Hongyu ; Xu, Jianjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-672a13b0998bc388743c0c4d7f358b11244e8269f2cb230b3a565ee8dd46088d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autoregressive processes</topic><topic>Back propagation networks</topic><topic>Clean energy</topic><topic>CS-BP</topic><topic>Forecasting</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>Oceans</topic><topic>Optimization</topic><topic>predication performance</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Search algorithms</topic><topic>significant wave heights</topic><topic>South China sea</topic><topic>Wave power</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shaobo</creatorcontrib><creatorcontrib>Xia, Tianliang</creatorcontrib><creatorcontrib>Zhang, Zhenquan</creatorcontrib><creatorcontrib>Zheng, Chongwei</creatorcontrib><creatorcontrib>Li, Xingfei</creatorcontrib><creatorcontrib>Li, Hongyu</creatorcontrib><creatorcontrib>Xu, Jianjun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Shaobo</au><au>Xia, Tianliang</au><au>Zhang, Zhenquan</au><au>Zheng, Chongwei</au><au>Li, Xingfei</au><au>Li, Hongyu</au><au>Xu, Jianjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Significant Wave Heights Based on CS-BP Model in the South China Sea</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>147490</spage><epage>147500</epage><pages>147490-147500</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Forecasting the significant wave heights (Hs) is indispensable in HS-related engineering studies and is exceedingly important in the assessment of wave energy in future. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to Hs has always been a vital research subject. In this paper, an optimized hybrid method based on the back propagation neural network (BP) and the cuckoo search algorithm (CS) is proposed to forecast the Hs in the South China Sea. This approach employs the CS as an intelligent optimization algorithm to optimize the parameters of the BP model, which develop a hybrid model that is suit for the data set, reducing the forecasting errors. The proposed method is subsequently tested based on nine prediction points selected in the South China Sea, where the proposed hybrid model is proved to perform effectively and steadily.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2944422</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9260-1836</orcidid><orcidid>https://orcid.org/0000-0002-1156-0201</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.147490-147500 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8852683 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Autoregressive processes Back propagation networks Clean energy CS-BP Forecasting Mathematical model Neural networks Oceans Optimization predication performance Prediction algorithms Predictive models Search algorithms significant wave heights South China sea Wave power Wind |
title | Prediction of Significant Wave Heights Based on CS-BP Model in the South China Sea |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Significant%20Wave%20Heights%20Based%20on%20CS-BP%20Model%20in%20the%20South%20China%20Sea&rft.jtitle=IEEE%20access&rft.au=Yang,%20Shaobo&rft.date=2019&rft.volume=7&rft.spage=147490&rft.epage=147500&rft.pages=147490-147500&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2944422&rft_dat=%3Cproquest_ieee_%3E2455598770%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455598770&rft_id=info:pmid/&rft_ieee_id=8852683&rft_doaj_id=oai_doaj_org_article_a61939a51f364828a8e0461bae5f4b77&rfr_iscdi=true |