Convolutional neural networks based indoor Wi-Fi localization with a novel kind of CSI images
Indoor Wi-Fi localization of mobile devices plays a more and more important role along with the rapid growth of location-based services and Wi-Fi mobile devices. In this paper, a new method of constructing the channel state information (CSI) image is proposed to improve the localization accuracy. Co...
Gespeichert in:
Veröffentlicht in: | China communications 2019-09, Vol.16 (9), p.250-260 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 9 |
container_start_page | 250 |
container_title | China communications |
container_volume | 16 |
creator | Li, Haihan Zeng, Xiangsheng Li, Yunzhou Zhou, Shidong Wang, Jing |
description | Indoor Wi-Fi localization of mobile devices plays a more and more important role along with the rapid growth of location-based services and Wi-Fi mobile devices. In this paper, a new method of constructing the channel state information (CSI) image is proposed to improve the localization accuracy. Compared with previous methods of constructing the CSI image, the new kind of CSI image proposed is able to contain more channel information such as the angle of arrival (AoA), the time of arrival (TOA) and the amplitude. We construct three gray images by using phase differences of different antennas and amplitudes of different subcarriers of one antenna, and then merge them to form one RGB image. The localization method has off-line stage and on-line stage. In the off-line stage, the composed three-channel RGB images at training locations are used to train a convolutional neural network (CNN) which has been proved to be efficient in image recognition. In the on-line stage, images at test locations are fed to the well-trained CNN model and the localization result is the weighted mean value with highest output values. The performance of the proposed method is verified with extensive experiments in the representative indoor environment. |
doi_str_mv | 10.23919/JCC.2019.09.019 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_RIE</sourceid><recordid>TN_cdi_ieee_primary_8851471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8851471</ieee_id><wanfj_id>zgtx201909019</wanfj_id><sourcerecordid>zgtx201909019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4e6eb514ba0f6deb04c9402bff1f006fd7be1b2c240f457736df0cf900e3a09a3</originalsourceid><addsrcrecordid>eNo9UE1PAjEU7EETCXI38dKLx8XXD7r0aDaiGBIPajyZpt1tsbBuTbuI8ustYHyZvLnMvMwbhC4IjCmTRF4_VNWYApFjyCDyBA2IKFkx4bw8Q6OUVpBnKgQTdIDeqtB9hXbT-9DpFnd2Ew_Ub0NcJ2x0sg32XRNCxK--mHnchlq3fqf3Drz1_TvWuAtftsXrrMPB4eppjv2HXtp0jk6dbpMd_fEQvcxun6v7YvF4N69uFkVNJesLboU1E8KNBicaa4DXkgM1zhEHIFxTGksMrSkHxydlyUTjoHYSwDINUrMhujre3erO6W6pVmET8z9J7Zb9974MkHllHRx1dQwpRevUZ8xJ448ioA7tqdye2hsUZBwsl0eLt9b-y6fTHLck7BcWfm3G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convolutional neural networks based indoor Wi-Fi localization with a novel kind of CSI images</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Haihan ; Zeng, Xiangsheng ; Li, Yunzhou ; Zhou, Shidong ; Wang, Jing</creator><creatorcontrib>Li, Haihan ; Zeng, Xiangsheng ; Li, Yunzhou ; Zhou, Shidong ; Wang, Jing</creatorcontrib><description>Indoor Wi-Fi localization of mobile devices plays a more and more important role along with the rapid growth of location-based services and Wi-Fi mobile devices. In this paper, a new method of constructing the channel state information (CSI) image is proposed to improve the localization accuracy. Compared with previous methods of constructing the CSI image, the new kind of CSI image proposed is able to contain more channel information such as the angle of arrival (AoA), the time of arrival (TOA) and the amplitude. We construct three gray images by using phase differences of different antennas and amplitudes of different subcarriers of one antenna, and then merge them to form one RGB image. The localization method has off-line stage and on-line stage. In the off-line stage, the composed three-channel RGB images at training locations are used to train a convolutional neural network (CNN) which has been proved to be efficient in image recognition. In the on-line stage, images at test locations are fed to the well-trained CNN model and the localization result is the weighted mean value with highest output values. The performance of the proposed method is verified with extensive experiments in the representative indoor environment.</description><identifier>ISSN: 1673-5447</identifier><identifier>DOI: 10.23919/JCC.2019.09.019</identifier><identifier>CODEN: CCHOBE</identifier><language>eng</language><publisher>China Institute of Communications</publisher><subject>Antenna measurements ; Antennas ; channel state information ; convolutional neural network ; CSI image ; Feature extraction ; Fingerprint recognition ; indoor Wi-Fi localization ; Mobile handsets ; Phase locked loops ; Wireless fidelity</subject><ispartof>China communications, 2019-09, Vol.16 (9), p.250-260</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4e6eb514ba0f6deb04c9402bff1f006fd7be1b2c240f457736df0cf900e3a09a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgtx/zgtx.jpg</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8851471$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8851471$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Haihan</creatorcontrib><creatorcontrib>Zeng, Xiangsheng</creatorcontrib><creatorcontrib>Li, Yunzhou</creatorcontrib><creatorcontrib>Zhou, Shidong</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><title>Convolutional neural networks based indoor Wi-Fi localization with a novel kind of CSI images</title><title>China communications</title><addtitle>ChinaComm</addtitle><description>Indoor Wi-Fi localization of mobile devices plays a more and more important role along with the rapid growth of location-based services and Wi-Fi mobile devices. In this paper, a new method of constructing the channel state information (CSI) image is proposed to improve the localization accuracy. Compared with previous methods of constructing the CSI image, the new kind of CSI image proposed is able to contain more channel information such as the angle of arrival (AoA), the time of arrival (TOA) and the amplitude. We construct three gray images by using phase differences of different antennas and amplitudes of different subcarriers of one antenna, and then merge them to form one RGB image. The localization method has off-line stage and on-line stage. In the off-line stage, the composed three-channel RGB images at training locations are used to train a convolutional neural network (CNN) which has been proved to be efficient in image recognition. In the on-line stage, images at test locations are fed to the well-trained CNN model and the localization result is the weighted mean value with highest output values. The performance of the proposed method is verified with extensive experiments in the representative indoor environment.</description><subject>Antenna measurements</subject><subject>Antennas</subject><subject>channel state information</subject><subject>convolutional neural network</subject><subject>CSI image</subject><subject>Feature extraction</subject><subject>Fingerprint recognition</subject><subject>indoor Wi-Fi localization</subject><subject>Mobile handsets</subject><subject>Phase locked loops</subject><subject>Wireless fidelity</subject><issn>1673-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1PAjEU7EETCXI38dKLx8XXD7r0aDaiGBIPajyZpt1tsbBuTbuI8ustYHyZvLnMvMwbhC4IjCmTRF4_VNWYApFjyCDyBA2IKFkx4bw8Q6OUVpBnKgQTdIDeqtB9hXbT-9DpFnd2Ew_Ub0NcJ2x0sg32XRNCxK--mHnchlq3fqf3Drz1_TvWuAtftsXrrMPB4eppjv2HXtp0jk6dbpMd_fEQvcxun6v7YvF4N69uFkVNJesLboU1E8KNBicaa4DXkgM1zhEHIFxTGksMrSkHxydlyUTjoHYSwDINUrMhujre3erO6W6pVmET8z9J7Zb9974MkHllHRx1dQwpRevUZ8xJ448ioA7tqdye2hsUZBwsl0eLt9b-y6fTHLck7BcWfm3G</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Li, Haihan</creator><creator>Zeng, Xiangsheng</creator><creator>Li, Yunzhou</creator><creator>Zhou, Shidong</creator><creator>Wang, Jing</creator><general>China Institute of Communications</general><general>Department of Electronic Engineering, Tsinghua University, Beijing 100084, China%Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China%Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China</general><general>Department of Electronic Engineering, Tsinghua University, Beijing 100084, China</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20190901</creationdate><title>Convolutional neural networks based indoor Wi-Fi localization with a novel kind of CSI images</title><author>Li, Haihan ; Zeng, Xiangsheng ; Li, Yunzhou ; Zhou, Shidong ; Wang, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4e6eb514ba0f6deb04c9402bff1f006fd7be1b2c240f457736df0cf900e3a09a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antenna measurements</topic><topic>Antennas</topic><topic>channel state information</topic><topic>convolutional neural network</topic><topic>CSI image</topic><topic>Feature extraction</topic><topic>Fingerprint recognition</topic><topic>indoor Wi-Fi localization</topic><topic>Mobile handsets</topic><topic>Phase locked loops</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Haihan</creatorcontrib><creatorcontrib>Zeng, Xiangsheng</creatorcontrib><creatorcontrib>Li, Yunzhou</creatorcontrib><creatorcontrib>Zhou, Shidong</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>China communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Haihan</au><au>Zeng, Xiangsheng</au><au>Li, Yunzhou</au><au>Zhou, Shidong</au><au>Wang, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional neural networks based indoor Wi-Fi localization with a novel kind of CSI images</atitle><jtitle>China communications</jtitle><stitle>ChinaComm</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>16</volume><issue>9</issue><spage>250</spage><epage>260</epage><pages>250-260</pages><issn>1673-5447</issn><coden>CCHOBE</coden><abstract>Indoor Wi-Fi localization of mobile devices plays a more and more important role along with the rapid growth of location-based services and Wi-Fi mobile devices. In this paper, a new method of constructing the channel state information (CSI) image is proposed to improve the localization accuracy. Compared with previous methods of constructing the CSI image, the new kind of CSI image proposed is able to contain more channel information such as the angle of arrival (AoA), the time of arrival (TOA) and the amplitude. We construct three gray images by using phase differences of different antennas and amplitudes of different subcarriers of one antenna, and then merge them to form one RGB image. The localization method has off-line stage and on-line stage. In the off-line stage, the composed three-channel RGB images at training locations are used to train a convolutional neural network (CNN) which has been proved to be efficient in image recognition. In the on-line stage, images at test locations are fed to the well-trained CNN model and the localization result is the weighted mean value with highest output values. The performance of the proposed method is verified with extensive experiments in the representative indoor environment.</abstract><pub>China Institute of Communications</pub><doi>10.23919/JCC.2019.09.019</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1673-5447 |
ispartof | China communications, 2019-09, Vol.16 (9), p.250-260 |
issn | 1673-5447 |
language | eng |
recordid | cdi_ieee_primary_8851471 |
source | IEEE Electronic Library (IEL) |
subjects | Antenna measurements Antennas channel state information convolutional neural network CSI image Feature extraction Fingerprint recognition indoor Wi-Fi localization Mobile handsets Phase locked loops Wireless fidelity |
title | Convolutional neural networks based indoor Wi-Fi localization with a novel kind of CSI images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20neural%20networks%20based%20indoor%20Wi-Fi%20localization%20with%20a%20novel%20kind%20of%20CSI%20images&rft.jtitle=China%20communications&rft.au=Li,%20Haihan&rft.date=2019-09-01&rft.volume=16&rft.issue=9&rft.spage=250&rft.epage=260&rft.pages=250-260&rft.issn=1673-5447&rft.coden=CCHOBE&rft_id=info:doi/10.23919/JCC.2019.09.019&rft_dat=%3Cwanfang_jour_RIE%3Ezgtx201909019%3C/wanfang_jour_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8851471&rft_wanfj_id=zgtx201909019&rfr_iscdi=true |