Double Regularization Matrix Factorization Recommendation Algorithm

With the development of social networks, the research of integrated social information recommendation models has received extensive attention. However, most existing social recommendation models are based on the matrix factorization technique which ignore the impact of the relationships between item...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.139668-139677
Hauptverfasser: Du, Ruizhong, Lu, Jiaojiao, Cai, Hongyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139677
container_issue
container_start_page 139668
container_title IEEE access
container_volume 7
creator Du, Ruizhong
Lu, Jiaojiao
Cai, Hongyun
description With the development of social networks, the research of integrated social information recommendation models has received extensive attention. However, most existing social recommendation models are based on the matrix factorization technique which ignore the impact of the relationships between items on users' interests, resulting in a decline of recommendation accuracy. To solve this problem, this paper proposes a double regularization matrix factorization recommendation algorithm. The algorithm first uses attribute information and manifold learning to calculate similarity. Then, the matrix factorization model is constrained through the regularization of item association relations and user social relations. Experimental results on real datasets show that the proposed method can effectively alleviate problems such as cold start and data sparsity in the recommender system and improve the recommendation accuracy compared with those of existing methods.
doi_str_mv 10.1109/ACCESS.2019.2943600
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8848392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8848392</ieee_id><doaj_id>oai_doaj_org_article_8576c41a63ed4b2a82b604946c6fba79</doaj_id><sourcerecordid>2455615418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-bcd1c17e06661047b3d27a96a35d3facc6613c3a1303e026f1cd3bea07bc652d3</originalsourceid><addsrcrecordid>eNpNUE1PwkAQ3RhNJMgv4ELiubjf7R5JBSXBmICeN7PbLZa0LG5Lov56F0uIc5mZN_PeTB5CY4KnhGD1MMvz-WYzpZioKVWcSYyv0IASqRImmLz-V9-iUdvucIwsQiIdoPzRH03tJmu3PdYQqh_oKr-fvEAXqq_JAmznL-DaWd80bl_07azexln30dyhmxLq1o3OeYjeF_O3_DlZvT4t89kqsRxnXWJsQSxJHZZSEsxTwwqagpLARMFKsDbCzDIgDDOHqSyJLZhxgFNjpaAFG6Jlr1t42OlDqBoI39pDpf8AH7YaQlfZ2ulMpNJyApK5ghsKGTUSc8WllaWBVEWt-17rEPzn0bWd3vlj2Mf3NeVCSCI4yeIW67ds8G0bXHm5SrA-ma978_XJfH02P7LGPatyzl0YWcYzpij7BcnPf_k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455615418</pqid></control><display><type>article</type><title>Double Regularization Matrix Factorization Recommendation Algorithm</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Du, Ruizhong ; Lu, Jiaojiao ; Cai, Hongyun</creator><creatorcontrib>Du, Ruizhong ; Lu, Jiaojiao ; Cai, Hongyun</creatorcontrib><description>With the development of social networks, the research of integrated social information recommendation models has received extensive attention. However, most existing social recommendation models are based on the matrix factorization technique which ignore the impact of the relationships between items on users' interests, resulting in a decline of recommendation accuracy. To solve this problem, this paper proposes a double regularization matrix factorization recommendation algorithm. The algorithm first uses attribute information and manifold learning to calculate similarity. Then, the matrix factorization model is constrained through the regularization of item association relations and user social relations. Experimental results on real datasets show that the proposed method can effectively alleviate problems such as cold start and data sparsity in the recommender system and improve the recommendation accuracy compared with those of existing methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2943600</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Collaboration ; Correlation ; Factorization ; item similarity ; Machine learning ; manifold learning ; Manifolds ; Manifolds (mathematics) ; matrix factorization ; recommender system ; Recommender systems ; Regularization ; Social network ; Social networking (online) ; Social networks</subject><ispartof>IEEE access, 2019, Vol.7, p.139668-139677</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-bcd1c17e06661047b3d27a96a35d3facc6613c3a1303e026f1cd3bea07bc652d3</citedby><cites>FETCH-LOGICAL-c408t-bcd1c17e06661047b3d27a96a35d3facc6613c3a1303e026f1cd3bea07bc652d3</cites><orcidid>0000-0003-3129-8922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8848392$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Du, Ruizhong</creatorcontrib><creatorcontrib>Lu, Jiaojiao</creatorcontrib><creatorcontrib>Cai, Hongyun</creatorcontrib><title>Double Regularization Matrix Factorization Recommendation Algorithm</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the development of social networks, the research of integrated social information recommendation models has received extensive attention. However, most existing social recommendation models are based on the matrix factorization technique which ignore the impact of the relationships between items on users' interests, resulting in a decline of recommendation accuracy. To solve this problem, this paper proposes a double regularization matrix factorization recommendation algorithm. The algorithm first uses attribute information and manifold learning to calculate similarity. Then, the matrix factorization model is constrained through the regularization of item association relations and user social relations. Experimental results on real datasets show that the proposed method can effectively alleviate problems such as cold start and data sparsity in the recommender system and improve the recommendation accuracy compared with those of existing methods.</description><subject>Algorithms</subject><subject>Collaboration</subject><subject>Correlation</subject><subject>Factorization</subject><subject>item similarity</subject><subject>Machine learning</subject><subject>manifold learning</subject><subject>Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>matrix factorization</subject><subject>recommender system</subject><subject>Recommender systems</subject><subject>Regularization</subject><subject>Social network</subject><subject>Social networking (online)</subject><subject>Social networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PwkAQ3RhNJMgv4ELiubjf7R5JBSXBmICeN7PbLZa0LG5Lov56F0uIc5mZN_PeTB5CY4KnhGD1MMvz-WYzpZioKVWcSYyv0IASqRImmLz-V9-iUdvucIwsQiIdoPzRH03tJmu3PdYQqh_oKr-fvEAXqq_JAmznL-DaWd80bl_07azexln30dyhmxLq1o3OeYjeF_O3_DlZvT4t89kqsRxnXWJsQSxJHZZSEsxTwwqagpLARMFKsDbCzDIgDDOHqSyJLZhxgFNjpaAFG6Jlr1t42OlDqBoI39pDpf8AH7YaQlfZ2ulMpNJyApK5ghsKGTUSc8WllaWBVEWt-17rEPzn0bWd3vlj2Mf3NeVCSCI4yeIW67ds8G0bXHm5SrA-ma978_XJfH02P7LGPatyzl0YWcYzpij7BcnPf_k</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Du, Ruizhong</creator><creator>Lu, Jiaojiao</creator><creator>Cai, Hongyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3129-8922</orcidid></search><sort><creationdate>2019</creationdate><title>Double Regularization Matrix Factorization Recommendation Algorithm</title><author>Du, Ruizhong ; Lu, Jiaojiao ; Cai, Hongyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-bcd1c17e06661047b3d27a96a35d3facc6613c3a1303e026f1cd3bea07bc652d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Collaboration</topic><topic>Correlation</topic><topic>Factorization</topic><topic>item similarity</topic><topic>Machine learning</topic><topic>manifold learning</topic><topic>Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>matrix factorization</topic><topic>recommender system</topic><topic>Recommender systems</topic><topic>Regularization</topic><topic>Social network</topic><topic>Social networking (online)</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Ruizhong</creatorcontrib><creatorcontrib>Lu, Jiaojiao</creatorcontrib><creatorcontrib>Cai, Hongyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Ruizhong</au><au>Lu, Jiaojiao</au><au>Cai, Hongyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double Regularization Matrix Factorization Recommendation Algorithm</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>139668</spage><epage>139677</epage><pages>139668-139677</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the development of social networks, the research of integrated social information recommendation models has received extensive attention. However, most existing social recommendation models are based on the matrix factorization technique which ignore the impact of the relationships between items on users' interests, resulting in a decline of recommendation accuracy. To solve this problem, this paper proposes a double regularization matrix factorization recommendation algorithm. The algorithm first uses attribute information and manifold learning to calculate similarity. Then, the matrix factorization model is constrained through the regularization of item association relations and user social relations. Experimental results on real datasets show that the proposed method can effectively alleviate problems such as cold start and data sparsity in the recommender system and improve the recommendation accuracy compared with those of existing methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2943600</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3129-8922</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.139668-139677
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8848392
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Collaboration
Correlation
Factorization
item similarity
Machine learning
manifold learning
Manifolds
Manifolds (mathematics)
matrix factorization
recommender system
Recommender systems
Regularization
Social network
Social networking (online)
Social networks
title Double Regularization Matrix Factorization Recommendation Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double%20Regularization%20Matrix%20Factorization%20Recommendation%20Algorithm&rft.jtitle=IEEE%20access&rft.au=Du,%20Ruizhong&rft.date=2019&rft.volume=7&rft.spage=139668&rft.epage=139677&rft.pages=139668-139677&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2943600&rft_dat=%3Cproquest_ieee_%3E2455615418%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455615418&rft_id=info:pmid/&rft_ieee_id=8848392&rft_doaj_id=oai_doaj_org_article_8576c41a63ed4b2a82b604946c6fba79&rfr_iscdi=true