Double Regularization Matrix Factorization Recommendation Algorithm
With the development of social networks, the research of integrated social information recommendation models has received extensive attention. However, most existing social recommendation models are based on the matrix factorization technique which ignore the impact of the relationships between item...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.139668-139677 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 139677 |
---|---|
container_issue | |
container_start_page | 139668 |
container_title | IEEE access |
container_volume | 7 |
creator | Du, Ruizhong Lu, Jiaojiao Cai, Hongyun |
description | With the development of social networks, the research of integrated social information recommendation models has received extensive attention. However, most existing social recommendation models are based on the matrix factorization technique which ignore the impact of the relationships between items on users' interests, resulting in a decline of recommendation accuracy. To solve this problem, this paper proposes a double regularization matrix factorization recommendation algorithm. The algorithm first uses attribute information and manifold learning to calculate similarity. Then, the matrix factorization model is constrained through the regularization of item association relations and user social relations. Experimental results on real datasets show that the proposed method can effectively alleviate problems such as cold start and data sparsity in the recommender system and improve the recommendation accuracy compared with those of existing methods. |
doi_str_mv | 10.1109/ACCESS.2019.2943600 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8848392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8848392</ieee_id><doaj_id>oai_doaj_org_article_8576c41a63ed4b2a82b604946c6fba79</doaj_id><sourcerecordid>2455615418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-bcd1c17e06661047b3d27a96a35d3facc6613c3a1303e026f1cd3bea07bc652d3</originalsourceid><addsrcrecordid>eNpNUE1PwkAQ3RhNJMgv4ELiubjf7R5JBSXBmICeN7PbLZa0LG5Lov56F0uIc5mZN_PeTB5CY4KnhGD1MMvz-WYzpZioKVWcSYyv0IASqRImmLz-V9-iUdvucIwsQiIdoPzRH03tJmu3PdYQqh_oKr-fvEAXqq_JAmznL-DaWd80bl_07azexln30dyhmxLq1o3OeYjeF_O3_DlZvT4t89kqsRxnXWJsQSxJHZZSEsxTwwqagpLARMFKsDbCzDIgDDOHqSyJLZhxgFNjpaAFG6Jlr1t42OlDqBoI39pDpf8AH7YaQlfZ2ulMpNJyApK5ghsKGTUSc8WllaWBVEWt-17rEPzn0bWd3vlj2Mf3NeVCSCI4yeIW67ds8G0bXHm5SrA-ma978_XJfH02P7LGPatyzl0YWcYzpij7BcnPf_k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455615418</pqid></control><display><type>article</type><title>Double Regularization Matrix Factorization Recommendation Algorithm</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Du, Ruizhong ; Lu, Jiaojiao ; Cai, Hongyun</creator><creatorcontrib>Du, Ruizhong ; Lu, Jiaojiao ; Cai, Hongyun</creatorcontrib><description>With the development of social networks, the research of integrated social information recommendation models has received extensive attention. However, most existing social recommendation models are based on the matrix factorization technique which ignore the impact of the relationships between items on users' interests, resulting in a decline of recommendation accuracy. To solve this problem, this paper proposes a double regularization matrix factorization recommendation algorithm. The algorithm first uses attribute information and manifold learning to calculate similarity. Then, the matrix factorization model is constrained through the regularization of item association relations and user social relations. Experimental results on real datasets show that the proposed method can effectively alleviate problems such as cold start and data sparsity in the recommender system and improve the recommendation accuracy compared with those of existing methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2943600</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Collaboration ; Correlation ; Factorization ; item similarity ; Machine learning ; manifold learning ; Manifolds ; Manifolds (mathematics) ; matrix factorization ; recommender system ; Recommender systems ; Regularization ; Social network ; Social networking (online) ; Social networks</subject><ispartof>IEEE access, 2019, Vol.7, p.139668-139677</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-bcd1c17e06661047b3d27a96a35d3facc6613c3a1303e026f1cd3bea07bc652d3</citedby><cites>FETCH-LOGICAL-c408t-bcd1c17e06661047b3d27a96a35d3facc6613c3a1303e026f1cd3bea07bc652d3</cites><orcidid>0000-0003-3129-8922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8848392$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Du, Ruizhong</creatorcontrib><creatorcontrib>Lu, Jiaojiao</creatorcontrib><creatorcontrib>Cai, Hongyun</creatorcontrib><title>Double Regularization Matrix Factorization Recommendation Algorithm</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the development of social networks, the research of integrated social information recommendation models has received extensive attention. However, most existing social recommendation models are based on the matrix factorization technique which ignore the impact of the relationships between items on users' interests, resulting in a decline of recommendation accuracy. To solve this problem, this paper proposes a double regularization matrix factorization recommendation algorithm. The algorithm first uses attribute information and manifold learning to calculate similarity. Then, the matrix factorization model is constrained through the regularization of item association relations and user social relations. Experimental results on real datasets show that the proposed method can effectively alleviate problems such as cold start and data sparsity in the recommender system and improve the recommendation accuracy compared with those of existing methods.</description><subject>Algorithms</subject><subject>Collaboration</subject><subject>Correlation</subject><subject>Factorization</subject><subject>item similarity</subject><subject>Machine learning</subject><subject>manifold learning</subject><subject>Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>matrix factorization</subject><subject>recommender system</subject><subject>Recommender systems</subject><subject>Regularization</subject><subject>Social network</subject><subject>Social networking (online)</subject><subject>Social networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PwkAQ3RhNJMgv4ELiubjf7R5JBSXBmICeN7PbLZa0LG5Lov56F0uIc5mZN_PeTB5CY4KnhGD1MMvz-WYzpZioKVWcSYyv0IASqRImmLz-V9-iUdvucIwsQiIdoPzRH03tJmu3PdYQqh_oKr-fvEAXqq_JAmznL-DaWd80bl_07azexln30dyhmxLq1o3OeYjeF_O3_DlZvT4t89kqsRxnXWJsQSxJHZZSEsxTwwqagpLARMFKsDbCzDIgDDOHqSyJLZhxgFNjpaAFG6Jlr1t42OlDqBoI39pDpf8AH7YaQlfZ2ulMpNJyApK5ghsKGTUSc8WllaWBVEWt-17rEPzn0bWd3vlj2Mf3NeVCSCI4yeIW67ds8G0bXHm5SrA-ma978_XJfH02P7LGPatyzl0YWcYzpij7BcnPf_k</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Du, Ruizhong</creator><creator>Lu, Jiaojiao</creator><creator>Cai, Hongyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3129-8922</orcidid></search><sort><creationdate>2019</creationdate><title>Double Regularization Matrix Factorization Recommendation Algorithm</title><author>Du, Ruizhong ; Lu, Jiaojiao ; Cai, Hongyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-bcd1c17e06661047b3d27a96a35d3facc6613c3a1303e026f1cd3bea07bc652d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Collaboration</topic><topic>Correlation</topic><topic>Factorization</topic><topic>item similarity</topic><topic>Machine learning</topic><topic>manifold learning</topic><topic>Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>matrix factorization</topic><topic>recommender system</topic><topic>Recommender systems</topic><topic>Regularization</topic><topic>Social network</topic><topic>Social networking (online)</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Ruizhong</creatorcontrib><creatorcontrib>Lu, Jiaojiao</creatorcontrib><creatorcontrib>Cai, Hongyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Ruizhong</au><au>Lu, Jiaojiao</au><au>Cai, Hongyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double Regularization Matrix Factorization Recommendation Algorithm</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>139668</spage><epage>139677</epage><pages>139668-139677</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the development of social networks, the research of integrated social information recommendation models has received extensive attention. However, most existing social recommendation models are based on the matrix factorization technique which ignore the impact of the relationships between items on users' interests, resulting in a decline of recommendation accuracy. To solve this problem, this paper proposes a double regularization matrix factorization recommendation algorithm. The algorithm first uses attribute information and manifold learning to calculate similarity. Then, the matrix factorization model is constrained through the regularization of item association relations and user social relations. Experimental results on real datasets show that the proposed method can effectively alleviate problems such as cold start and data sparsity in the recommender system and improve the recommendation accuracy compared with those of existing methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2943600</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3129-8922</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.139668-139677 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8848392 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Collaboration Correlation Factorization item similarity Machine learning manifold learning Manifolds Manifolds (mathematics) matrix factorization recommender system Recommender systems Regularization Social network Social networking (online) Social networks |
title | Double Regularization Matrix Factorization Recommendation Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double%20Regularization%20Matrix%20Factorization%20Recommendation%20Algorithm&rft.jtitle=IEEE%20access&rft.au=Du,%20Ruizhong&rft.date=2019&rft.volume=7&rft.spage=139668&rft.epage=139677&rft.pages=139668-139677&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2943600&rft_dat=%3Cproquest_ieee_%3E2455615418%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455615418&rft_id=info:pmid/&rft_ieee_id=8848392&rft_doaj_id=oai_doaj_org_article_8576c41a63ed4b2a82b604946c6fba79&rfr_iscdi=true |