Emotion Recognition and EEG Analysis Using ADMM-Based Sparse Group Lasso

This study presents an efficient sparse learning-based pattern recognition framework to recognize the discrete states of three emotions-happy, angry, and neutral emotion-using electroencephalogram (EEG) signals. In affective computing with massive spatiotemporal brainwave signals, a large number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on affective computing 2022-01, Vol.13 (1), p.199-210
Hauptverfasser: Puk, Kin Ming, Wang, Shouyi, Rosenberger, Jay, Gandy, Kellen C., Harris, Haley Nicole, Peng, Yuan Bo, Nordberg, Anne, Lehmann, Peter, Tommerdahl, Jodi, Chiao, Jung-Chih
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 210
container_issue 1
container_start_page 199
container_title IEEE transactions on affective computing
container_volume 13
creator Puk, Kin Ming
Wang, Shouyi
Rosenberger, Jay
Gandy, Kellen C.
Harris, Haley Nicole
Peng, Yuan Bo
Nordberg, Anne
Lehmann, Peter
Tommerdahl, Jodi
Chiao, Jung-Chih
description This study presents an efficient sparse learning-based pattern recognition framework to recognize the discrete states of three emotions-happy, angry, and neutral emotion-using electroencephalogram (EEG) signals. In affective computing with massive spatiotemporal brainwave signals, a large number of features can be extracted to capture various information from multivariate brain data. However, it is often a challenge to model high-dimensional features efficiently in consideration of the intrinsic structure, such as channel location, feature group, time epoch, etc. In this study, features were extensively extracted from EEG signals and were applied on a structured sparse learning model to perform feature selection and classification simultaneously. An efficient ADMM-based algorithm with a closed-form solution was developed to solve the sparse group model. Experimental results show that the proposed method is capable of selecting a small number of important neural features to discriminate the three emotion states with high classification accuracy. With greatly enhanced interpretability and efficiency to learn neural signatures of brain activity from high-dimensional-feature, low-sample-size brain imaging data, the presented computational framework is promising for handling emotion recognition problems with high-dimensional brain imaging data.
doi_str_mv 10.1109/TAFFC.2019.2943551
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8847462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8847462</ieee_id><sourcerecordid>2635043629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-62bc01b15f9bb2dc9cf5d94505cef3c4b7ce9589dd7f65bf28afb9184e91a733</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EElXpH4CLJc4pfibxMZS0RWqFBOVsOY5dpWrj4G0P_fekDyH2snOYWe18CD1SMqaUqJdVMZ1OxoxQNWZKcCnpDRpQJVTCiZC3__Q9GgFsSD-c85RlAzQvd2HfhBZ_OhvWbXPWpq1xWc5w0ZrtERrA39C0a1y8LZfJqwFX46_ORHB4FsOhwwsDEB7QnTdbcKPrHqLVtFxN5sniY_Y-KRaJZUruk5RVltCKSq-qitVWWS9rJSSR1nluRZVZp2Su6jrzqaw8y42vFM2FU9RknA_R8-VsF8PPwcFeb8Ih9n-CZimXRPS1VO9iF5eNASA6r7vY7Ew8akr0iZk-M9MnZvrKrA89XUKNc-4vkOciEynjv4oIZq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635043629</pqid></control><display><type>article</type><title>Emotion Recognition and EEG Analysis Using ADMM-Based Sparse Group Lasso</title><source>IEEE Electronic Library (IEL)</source><creator>Puk, Kin Ming ; Wang, Shouyi ; Rosenberger, Jay ; Gandy, Kellen C. ; Harris, Haley Nicole ; Peng, Yuan Bo ; Nordberg, Anne ; Lehmann, Peter ; Tommerdahl, Jodi ; Chiao, Jung-Chih</creator><creatorcontrib>Puk, Kin Ming ; Wang, Shouyi ; Rosenberger, Jay ; Gandy, Kellen C. ; Harris, Haley Nicole ; Peng, Yuan Bo ; Nordberg, Anne ; Lehmann, Peter ; Tommerdahl, Jodi ; Chiao, Jung-Chih</creatorcontrib><description>This study presents an efficient sparse learning-based pattern recognition framework to recognize the discrete states of three emotions-happy, angry, and neutral emotion-using electroencephalogram (EEG) signals. In affective computing with massive spatiotemporal brainwave signals, a large number of features can be extracted to capture various information from multivariate brain data. However, it is often a challenge to model high-dimensional features efficiently in consideration of the intrinsic structure, such as channel location, feature group, time epoch, etc. In this study, features were extensively extracted from EEG signals and were applied on a structured sparse learning model to perform feature selection and classification simultaneously. An efficient ADMM-based algorithm with a closed-form solution was developed to solve the sparse group model. Experimental results show that the proposed method is capable of selecting a small number of important neural features to discriminate the three emotion states with high classification accuracy. With greatly enhanced interpretability and efficiency to learn neural signatures of brain activity from high-dimensional-feature, low-sample-size brain imaging data, the presented computational framework is promising for handling emotion recognition problems with high-dimensional brain imaging data.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2019.2943551</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Affective computing ; Algorithms ; Atmospheric measurements ; Brain ; Brain modeling ; Classification ; EEG ; electroencephalogram ; Electroencephalography ; Emotion recognition ; Emotions ; Feature extraction ; feature selection ; group structure learning ; Learning ; Medical imaging ; multi-modal emotion processing ; Multivariate analysis ; Pattern recognition ; Physiology ; supervised learning</subject><ispartof>IEEE transactions on affective computing, 2022-01, Vol.13 (1), p.199-210</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-62bc01b15f9bb2dc9cf5d94505cef3c4b7ce9589dd7f65bf28afb9184e91a733</citedby><cites>FETCH-LOGICAL-c295t-62bc01b15f9bb2dc9cf5d94505cef3c4b7ce9589dd7f65bf28afb9184e91a733</cites><orcidid>0000-0002-1063-220X ; 0000-0002-3903-422X ; 0000-0002-3124-859X ; 0000-0001-6366-3619 ; 0000-0002-7698-5083 ; 0000-0003-4038-1402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8847462$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8847462$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Puk, Kin Ming</creatorcontrib><creatorcontrib>Wang, Shouyi</creatorcontrib><creatorcontrib>Rosenberger, Jay</creatorcontrib><creatorcontrib>Gandy, Kellen C.</creatorcontrib><creatorcontrib>Harris, Haley Nicole</creatorcontrib><creatorcontrib>Peng, Yuan Bo</creatorcontrib><creatorcontrib>Nordberg, Anne</creatorcontrib><creatorcontrib>Lehmann, Peter</creatorcontrib><creatorcontrib>Tommerdahl, Jodi</creatorcontrib><creatorcontrib>Chiao, Jung-Chih</creatorcontrib><title>Emotion Recognition and EEG Analysis Using ADMM-Based Sparse Group Lasso</title><title>IEEE transactions on affective computing</title><addtitle>TAFFC</addtitle><description>This study presents an efficient sparse learning-based pattern recognition framework to recognize the discrete states of three emotions-happy, angry, and neutral emotion-using electroencephalogram (EEG) signals. In affective computing with massive spatiotemporal brainwave signals, a large number of features can be extracted to capture various information from multivariate brain data. However, it is often a challenge to model high-dimensional features efficiently in consideration of the intrinsic structure, such as channel location, feature group, time epoch, etc. In this study, features were extensively extracted from EEG signals and were applied on a structured sparse learning model to perform feature selection and classification simultaneously. An efficient ADMM-based algorithm with a closed-form solution was developed to solve the sparse group model. Experimental results show that the proposed method is capable of selecting a small number of important neural features to discriminate the three emotion states with high classification accuracy. With greatly enhanced interpretability and efficiency to learn neural signatures of brain activity from high-dimensional-feature, low-sample-size brain imaging data, the presented computational framework is promising for handling emotion recognition problems with high-dimensional brain imaging data.</description><subject>Affective computing</subject><subject>Algorithms</subject><subject>Atmospheric measurements</subject><subject>Brain</subject><subject>Brain modeling</subject><subject>Classification</subject><subject>EEG</subject><subject>electroencephalogram</subject><subject>Electroencephalography</subject><subject>Emotion recognition</subject><subject>Emotions</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>group structure learning</subject><subject>Learning</subject><subject>Medical imaging</subject><subject>multi-modal emotion processing</subject><subject>Multivariate analysis</subject><subject>Pattern recognition</subject><subject>Physiology</subject><subject>supervised learning</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhC0EElXpH4CLJc4pfibxMZS0RWqFBOVsOY5dpWrj4G0P_fekDyH2snOYWe18CD1SMqaUqJdVMZ1OxoxQNWZKcCnpDRpQJVTCiZC3__Q9GgFsSD-c85RlAzQvd2HfhBZ_OhvWbXPWpq1xWc5w0ZrtERrA39C0a1y8LZfJqwFX46_ORHB4FsOhwwsDEB7QnTdbcKPrHqLVtFxN5sniY_Y-KRaJZUruk5RVltCKSq-qitVWWS9rJSSR1nluRZVZp2Su6jrzqaw8y42vFM2FU9RknA_R8-VsF8PPwcFeb8Ih9n-CZimXRPS1VO9iF5eNASA6r7vY7Ew8akr0iZk-M9MnZvrKrA89XUKNc-4vkOciEynjv4oIZq8</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Puk, Kin Ming</creator><creator>Wang, Shouyi</creator><creator>Rosenberger, Jay</creator><creator>Gandy, Kellen C.</creator><creator>Harris, Haley Nicole</creator><creator>Peng, Yuan Bo</creator><creator>Nordberg, Anne</creator><creator>Lehmann, Peter</creator><creator>Tommerdahl, Jodi</creator><creator>Chiao, Jung-Chih</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1063-220X</orcidid><orcidid>https://orcid.org/0000-0002-3903-422X</orcidid><orcidid>https://orcid.org/0000-0002-3124-859X</orcidid><orcidid>https://orcid.org/0000-0001-6366-3619</orcidid><orcidid>https://orcid.org/0000-0002-7698-5083</orcidid><orcidid>https://orcid.org/0000-0003-4038-1402</orcidid></search><sort><creationdate>202201</creationdate><title>Emotion Recognition and EEG Analysis Using ADMM-Based Sparse Group Lasso</title><author>Puk, Kin Ming ; Wang, Shouyi ; Rosenberger, Jay ; Gandy, Kellen C. ; Harris, Haley Nicole ; Peng, Yuan Bo ; Nordberg, Anne ; Lehmann, Peter ; Tommerdahl, Jodi ; Chiao, Jung-Chih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-62bc01b15f9bb2dc9cf5d94505cef3c4b7ce9589dd7f65bf28afb9184e91a733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Affective computing</topic><topic>Algorithms</topic><topic>Atmospheric measurements</topic><topic>Brain</topic><topic>Brain modeling</topic><topic>Classification</topic><topic>EEG</topic><topic>electroencephalogram</topic><topic>Electroencephalography</topic><topic>Emotion recognition</topic><topic>Emotions</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>group structure learning</topic><topic>Learning</topic><topic>Medical imaging</topic><topic>multi-modal emotion processing</topic><topic>Multivariate analysis</topic><topic>Pattern recognition</topic><topic>Physiology</topic><topic>supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puk, Kin Ming</creatorcontrib><creatorcontrib>Wang, Shouyi</creatorcontrib><creatorcontrib>Rosenberger, Jay</creatorcontrib><creatorcontrib>Gandy, Kellen C.</creatorcontrib><creatorcontrib>Harris, Haley Nicole</creatorcontrib><creatorcontrib>Peng, Yuan Bo</creatorcontrib><creatorcontrib>Nordberg, Anne</creatorcontrib><creatorcontrib>Lehmann, Peter</creatorcontrib><creatorcontrib>Tommerdahl, Jodi</creatorcontrib><creatorcontrib>Chiao, Jung-Chih</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Puk, Kin Ming</au><au>Wang, Shouyi</au><au>Rosenberger, Jay</au><au>Gandy, Kellen C.</au><au>Harris, Haley Nicole</au><au>Peng, Yuan Bo</au><au>Nordberg, Anne</au><au>Lehmann, Peter</au><au>Tommerdahl, Jodi</au><au>Chiao, Jung-Chih</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emotion Recognition and EEG Analysis Using ADMM-Based Sparse Group Lasso</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>TAFFC</stitle><date>2022-01</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>199</spage><epage>210</epage><pages>199-210</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>This study presents an efficient sparse learning-based pattern recognition framework to recognize the discrete states of three emotions-happy, angry, and neutral emotion-using electroencephalogram (EEG) signals. In affective computing with massive spatiotemporal brainwave signals, a large number of features can be extracted to capture various information from multivariate brain data. However, it is often a challenge to model high-dimensional features efficiently in consideration of the intrinsic structure, such as channel location, feature group, time epoch, etc. In this study, features were extensively extracted from EEG signals and were applied on a structured sparse learning model to perform feature selection and classification simultaneously. An efficient ADMM-based algorithm with a closed-form solution was developed to solve the sparse group model. Experimental results show that the proposed method is capable of selecting a small number of important neural features to discriminate the three emotion states with high classification accuracy. With greatly enhanced interpretability and efficiency to learn neural signatures of brain activity from high-dimensional-feature, low-sample-size brain imaging data, the presented computational framework is promising for handling emotion recognition problems with high-dimensional brain imaging data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2019.2943551</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1063-220X</orcidid><orcidid>https://orcid.org/0000-0002-3903-422X</orcidid><orcidid>https://orcid.org/0000-0002-3124-859X</orcidid><orcidid>https://orcid.org/0000-0001-6366-3619</orcidid><orcidid>https://orcid.org/0000-0002-7698-5083</orcidid><orcidid>https://orcid.org/0000-0003-4038-1402</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3045
ispartof IEEE transactions on affective computing, 2022-01, Vol.13 (1), p.199-210
issn 1949-3045
1949-3045
language eng
recordid cdi_ieee_primary_8847462
source IEEE Electronic Library (IEL)
subjects Affective computing
Algorithms
Atmospheric measurements
Brain
Brain modeling
Classification
EEG
electroencephalogram
Electroencephalography
Emotion recognition
Emotions
Feature extraction
feature selection
group structure learning
Learning
Medical imaging
multi-modal emotion processing
Multivariate analysis
Pattern recognition
Physiology
supervised learning
title Emotion Recognition and EEG Analysis Using ADMM-Based Sparse Group Lasso
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emotion%20Recognition%20and%20EEG%20Analysis%20Using%20ADMM-Based%20Sparse%20Group%20Lasso&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Puk,%20Kin%20Ming&rft.date=2022-01&rft.volume=13&rft.issue=1&rft.spage=199&rft.epage=210&rft.pages=199-210&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2019.2943551&rft_dat=%3Cproquest_RIE%3E2635043629%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635043629&rft_id=info:pmid/&rft_ieee_id=8847462&rfr_iscdi=true