Emotion Recognition and EEG Analysis Using ADMM-Based Sparse Group Lasso
This study presents an efficient sparse learning-based pattern recognition framework to recognize the discrete states of three emotions-happy, angry, and neutral emotion-using electroencephalogram (EEG) signals. In affective computing with massive spatiotemporal brainwave signals, a large number of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on affective computing 2022-01, Vol.13 (1), p.199-210 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 210 |
---|---|
container_issue | 1 |
container_start_page | 199 |
container_title | IEEE transactions on affective computing |
container_volume | 13 |
creator | Puk, Kin Ming Wang, Shouyi Rosenberger, Jay Gandy, Kellen C. Harris, Haley Nicole Peng, Yuan Bo Nordberg, Anne Lehmann, Peter Tommerdahl, Jodi Chiao, Jung-Chih |
description | This study presents an efficient sparse learning-based pattern recognition framework to recognize the discrete states of three emotions-happy, angry, and neutral emotion-using electroencephalogram (EEG) signals. In affective computing with massive spatiotemporal brainwave signals, a large number of features can be extracted to capture various information from multivariate brain data. However, it is often a challenge to model high-dimensional features efficiently in consideration of the intrinsic structure, such as channel location, feature group, time epoch, etc. In this study, features were extensively extracted from EEG signals and were applied on a structured sparse learning model to perform feature selection and classification simultaneously. An efficient ADMM-based algorithm with a closed-form solution was developed to solve the sparse group model. Experimental results show that the proposed method is capable of selecting a small number of important neural features to discriminate the three emotion states with high classification accuracy. With greatly enhanced interpretability and efficiency to learn neural signatures of brain activity from high-dimensional-feature, low-sample-size brain imaging data, the presented computational framework is promising for handling emotion recognition problems with high-dimensional brain imaging data. |
doi_str_mv | 10.1109/TAFFC.2019.2943551 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8847462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8847462</ieee_id><sourcerecordid>2635043629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-62bc01b15f9bb2dc9cf5d94505cef3c4b7ce9589dd7f65bf28afb9184e91a733</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EElXpH4CLJc4pfibxMZS0RWqFBOVsOY5dpWrj4G0P_fekDyH2snOYWe18CD1SMqaUqJdVMZ1OxoxQNWZKcCnpDRpQJVTCiZC3__Q9GgFsSD-c85RlAzQvd2HfhBZ_OhvWbXPWpq1xWc5w0ZrtERrA39C0a1y8LZfJqwFX46_ORHB4FsOhwwsDEB7QnTdbcKPrHqLVtFxN5sniY_Y-KRaJZUruk5RVltCKSq-qitVWWS9rJSSR1nluRZVZp2Su6jrzqaw8y42vFM2FU9RknA_R8-VsF8PPwcFeb8Ih9n-CZimXRPS1VO9iF5eNASA6r7vY7Ew8akr0iZk-M9MnZvrKrA89XUKNc-4vkOciEynjv4oIZq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635043629</pqid></control><display><type>article</type><title>Emotion Recognition and EEG Analysis Using ADMM-Based Sparse Group Lasso</title><source>IEEE Electronic Library (IEL)</source><creator>Puk, Kin Ming ; Wang, Shouyi ; Rosenberger, Jay ; Gandy, Kellen C. ; Harris, Haley Nicole ; Peng, Yuan Bo ; Nordberg, Anne ; Lehmann, Peter ; Tommerdahl, Jodi ; Chiao, Jung-Chih</creator><creatorcontrib>Puk, Kin Ming ; Wang, Shouyi ; Rosenberger, Jay ; Gandy, Kellen C. ; Harris, Haley Nicole ; Peng, Yuan Bo ; Nordberg, Anne ; Lehmann, Peter ; Tommerdahl, Jodi ; Chiao, Jung-Chih</creatorcontrib><description>This study presents an efficient sparse learning-based pattern recognition framework to recognize the discrete states of three emotions-happy, angry, and neutral emotion-using electroencephalogram (EEG) signals. In affective computing with massive spatiotemporal brainwave signals, a large number of features can be extracted to capture various information from multivariate brain data. However, it is often a challenge to model high-dimensional features efficiently in consideration of the intrinsic structure, such as channel location, feature group, time epoch, etc. In this study, features were extensively extracted from EEG signals and were applied on a structured sparse learning model to perform feature selection and classification simultaneously. An efficient ADMM-based algorithm with a closed-form solution was developed to solve the sparse group model. Experimental results show that the proposed method is capable of selecting a small number of important neural features to discriminate the three emotion states with high classification accuracy. With greatly enhanced interpretability and efficiency to learn neural signatures of brain activity from high-dimensional-feature, low-sample-size brain imaging data, the presented computational framework is promising for handling emotion recognition problems with high-dimensional brain imaging data.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2019.2943551</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Affective computing ; Algorithms ; Atmospheric measurements ; Brain ; Brain modeling ; Classification ; EEG ; electroencephalogram ; Electroencephalography ; Emotion recognition ; Emotions ; Feature extraction ; feature selection ; group structure learning ; Learning ; Medical imaging ; multi-modal emotion processing ; Multivariate analysis ; Pattern recognition ; Physiology ; supervised learning</subject><ispartof>IEEE transactions on affective computing, 2022-01, Vol.13 (1), p.199-210</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-62bc01b15f9bb2dc9cf5d94505cef3c4b7ce9589dd7f65bf28afb9184e91a733</citedby><cites>FETCH-LOGICAL-c295t-62bc01b15f9bb2dc9cf5d94505cef3c4b7ce9589dd7f65bf28afb9184e91a733</cites><orcidid>0000-0002-1063-220X ; 0000-0002-3903-422X ; 0000-0002-3124-859X ; 0000-0001-6366-3619 ; 0000-0002-7698-5083 ; 0000-0003-4038-1402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8847462$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8847462$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Puk, Kin Ming</creatorcontrib><creatorcontrib>Wang, Shouyi</creatorcontrib><creatorcontrib>Rosenberger, Jay</creatorcontrib><creatorcontrib>Gandy, Kellen C.</creatorcontrib><creatorcontrib>Harris, Haley Nicole</creatorcontrib><creatorcontrib>Peng, Yuan Bo</creatorcontrib><creatorcontrib>Nordberg, Anne</creatorcontrib><creatorcontrib>Lehmann, Peter</creatorcontrib><creatorcontrib>Tommerdahl, Jodi</creatorcontrib><creatorcontrib>Chiao, Jung-Chih</creatorcontrib><title>Emotion Recognition and EEG Analysis Using ADMM-Based Sparse Group Lasso</title><title>IEEE transactions on affective computing</title><addtitle>TAFFC</addtitle><description>This study presents an efficient sparse learning-based pattern recognition framework to recognize the discrete states of three emotions-happy, angry, and neutral emotion-using electroencephalogram (EEG) signals. In affective computing with massive spatiotemporal brainwave signals, a large number of features can be extracted to capture various information from multivariate brain data. However, it is often a challenge to model high-dimensional features efficiently in consideration of the intrinsic structure, such as channel location, feature group, time epoch, etc. In this study, features were extensively extracted from EEG signals and were applied on a structured sparse learning model to perform feature selection and classification simultaneously. An efficient ADMM-based algorithm with a closed-form solution was developed to solve the sparse group model. Experimental results show that the proposed method is capable of selecting a small number of important neural features to discriminate the three emotion states with high classification accuracy. With greatly enhanced interpretability and efficiency to learn neural signatures of brain activity from high-dimensional-feature, low-sample-size brain imaging data, the presented computational framework is promising for handling emotion recognition problems with high-dimensional brain imaging data.</description><subject>Affective computing</subject><subject>Algorithms</subject><subject>Atmospheric measurements</subject><subject>Brain</subject><subject>Brain modeling</subject><subject>Classification</subject><subject>EEG</subject><subject>electroencephalogram</subject><subject>Electroencephalography</subject><subject>Emotion recognition</subject><subject>Emotions</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>group structure learning</subject><subject>Learning</subject><subject>Medical imaging</subject><subject>multi-modal emotion processing</subject><subject>Multivariate analysis</subject><subject>Pattern recognition</subject><subject>Physiology</subject><subject>supervised learning</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhC0EElXpH4CLJc4pfibxMZS0RWqFBOVsOY5dpWrj4G0P_fekDyH2snOYWe18CD1SMqaUqJdVMZ1OxoxQNWZKcCnpDRpQJVTCiZC3__Q9GgFsSD-c85RlAzQvd2HfhBZ_OhvWbXPWpq1xWc5w0ZrtERrA39C0a1y8LZfJqwFX46_ORHB4FsOhwwsDEB7QnTdbcKPrHqLVtFxN5sniY_Y-KRaJZUruk5RVltCKSq-qitVWWS9rJSSR1nluRZVZp2Su6jrzqaw8y42vFM2FU9RknA_R8-VsF8PPwcFeb8Ih9n-CZimXRPS1VO9iF5eNASA6r7vY7Ew8akr0iZk-M9MnZvrKrA89XUKNc-4vkOciEynjv4oIZq8</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Puk, Kin Ming</creator><creator>Wang, Shouyi</creator><creator>Rosenberger, Jay</creator><creator>Gandy, Kellen C.</creator><creator>Harris, Haley Nicole</creator><creator>Peng, Yuan Bo</creator><creator>Nordberg, Anne</creator><creator>Lehmann, Peter</creator><creator>Tommerdahl, Jodi</creator><creator>Chiao, Jung-Chih</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1063-220X</orcidid><orcidid>https://orcid.org/0000-0002-3903-422X</orcidid><orcidid>https://orcid.org/0000-0002-3124-859X</orcidid><orcidid>https://orcid.org/0000-0001-6366-3619</orcidid><orcidid>https://orcid.org/0000-0002-7698-5083</orcidid><orcidid>https://orcid.org/0000-0003-4038-1402</orcidid></search><sort><creationdate>202201</creationdate><title>Emotion Recognition and EEG Analysis Using ADMM-Based Sparse Group Lasso</title><author>Puk, Kin Ming ; Wang, Shouyi ; Rosenberger, Jay ; Gandy, Kellen C. ; Harris, Haley Nicole ; Peng, Yuan Bo ; Nordberg, Anne ; Lehmann, Peter ; Tommerdahl, Jodi ; Chiao, Jung-Chih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-62bc01b15f9bb2dc9cf5d94505cef3c4b7ce9589dd7f65bf28afb9184e91a733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Affective computing</topic><topic>Algorithms</topic><topic>Atmospheric measurements</topic><topic>Brain</topic><topic>Brain modeling</topic><topic>Classification</topic><topic>EEG</topic><topic>electroencephalogram</topic><topic>Electroencephalography</topic><topic>Emotion recognition</topic><topic>Emotions</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>group structure learning</topic><topic>Learning</topic><topic>Medical imaging</topic><topic>multi-modal emotion processing</topic><topic>Multivariate analysis</topic><topic>Pattern recognition</topic><topic>Physiology</topic><topic>supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puk, Kin Ming</creatorcontrib><creatorcontrib>Wang, Shouyi</creatorcontrib><creatorcontrib>Rosenberger, Jay</creatorcontrib><creatorcontrib>Gandy, Kellen C.</creatorcontrib><creatorcontrib>Harris, Haley Nicole</creatorcontrib><creatorcontrib>Peng, Yuan Bo</creatorcontrib><creatorcontrib>Nordberg, Anne</creatorcontrib><creatorcontrib>Lehmann, Peter</creatorcontrib><creatorcontrib>Tommerdahl, Jodi</creatorcontrib><creatorcontrib>Chiao, Jung-Chih</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Puk, Kin Ming</au><au>Wang, Shouyi</au><au>Rosenberger, Jay</au><au>Gandy, Kellen C.</au><au>Harris, Haley Nicole</au><au>Peng, Yuan Bo</au><au>Nordberg, Anne</au><au>Lehmann, Peter</au><au>Tommerdahl, Jodi</au><au>Chiao, Jung-Chih</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emotion Recognition and EEG Analysis Using ADMM-Based Sparse Group Lasso</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>TAFFC</stitle><date>2022-01</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>199</spage><epage>210</epage><pages>199-210</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>This study presents an efficient sparse learning-based pattern recognition framework to recognize the discrete states of three emotions-happy, angry, and neutral emotion-using electroencephalogram (EEG) signals. In affective computing with massive spatiotemporal brainwave signals, a large number of features can be extracted to capture various information from multivariate brain data. However, it is often a challenge to model high-dimensional features efficiently in consideration of the intrinsic structure, such as channel location, feature group, time epoch, etc. In this study, features were extensively extracted from EEG signals and were applied on a structured sparse learning model to perform feature selection and classification simultaneously. An efficient ADMM-based algorithm with a closed-form solution was developed to solve the sparse group model. Experimental results show that the proposed method is capable of selecting a small number of important neural features to discriminate the three emotion states with high classification accuracy. With greatly enhanced interpretability and efficiency to learn neural signatures of brain activity from high-dimensional-feature, low-sample-size brain imaging data, the presented computational framework is promising for handling emotion recognition problems with high-dimensional brain imaging data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2019.2943551</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1063-220X</orcidid><orcidid>https://orcid.org/0000-0002-3903-422X</orcidid><orcidid>https://orcid.org/0000-0002-3124-859X</orcidid><orcidid>https://orcid.org/0000-0001-6366-3619</orcidid><orcidid>https://orcid.org/0000-0002-7698-5083</orcidid><orcidid>https://orcid.org/0000-0003-4038-1402</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3045 |
ispartof | IEEE transactions on affective computing, 2022-01, Vol.13 (1), p.199-210 |
issn | 1949-3045 1949-3045 |
language | eng |
recordid | cdi_ieee_primary_8847462 |
source | IEEE Electronic Library (IEL) |
subjects | Affective computing Algorithms Atmospheric measurements Brain Brain modeling Classification EEG electroencephalogram Electroencephalography Emotion recognition Emotions Feature extraction feature selection group structure learning Learning Medical imaging multi-modal emotion processing Multivariate analysis Pattern recognition Physiology supervised learning |
title | Emotion Recognition and EEG Analysis Using ADMM-Based Sparse Group Lasso |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emotion%20Recognition%20and%20EEG%20Analysis%20Using%20ADMM-Based%20Sparse%20Group%20Lasso&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Puk,%20Kin%20Ming&rft.date=2022-01&rft.volume=13&rft.issue=1&rft.spage=199&rft.epage=210&rft.pages=199-210&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2019.2943551&rft_dat=%3Cproquest_RIE%3E2635043629%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635043629&rft_id=info:pmid/&rft_ieee_id=8847462&rfr_iscdi=true |