Nearest Neighbor Convex Hull Tensor Classification for Gear Intelligent Fault Diagnosis Based on Multi-Sensor Signals
For the feature tensor of multi-sensor signals classification problem in gear intelligent fault diagnosis, a new tensor classifier named nearest neighbor convex hull tensor classification (NNCHTC) is proposed in this paper. First, the convex hull distance from a test tensor sample to the convex hull...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.140781-140793 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 140793 |
---|---|
container_issue | |
container_start_page | 140781 |
container_title | IEEE access |
container_volume | 7 |
creator | Cheng, Zhengyang Wang, Rongji |
description | For the feature tensor of multi-sensor signals classification problem in gear intelligent fault diagnosis, a new tensor classifier named nearest neighbor convex hull tensor classification (NNCHTC) is proposed in this paper. First, the convex hull distance from a test tensor sample to the convex hull is taken as the similarity measure for classification. Then, the convex hull distance calculation is transformed into the feature tensor inner product, and CANDECOMP/PARAFAC (CP) decomposition is applied to the calculation process to capture the intrinsic information of the feature tensor. Furthermore, the reduction factor is introduced into NNCHTC to enhance its robustness. Finally, feature tensors are obtained from multi-sensor signals by wavelet packet transform (WPT) and used to identify gear working condition by NNCHTC. The experimental results show that NNCHTC not only can be effectively applied to the gear intelligent fault diagnosis based on multi-sensor signals but also has better robustness. |
doi_str_mv | 10.1109/ACCESS.2019.2943497 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8847293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8847293</ieee_id><doaj_id>oai_doaj_org_article_7502467d38204fa798a28b64580e63d2</doaj_id><sourcerecordid>2455645729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-440b663634e3b859e52cc0f12eb1a03ae196a3f9cc3d85c075379f36d9092a393</originalsourceid><addsrcrecordid>eNpNkUtP3TAUhCMEUhHlF7CxxDoXv2MvacrjSjwWl64txzkJvgoxtZMK_j1OgxDeHOvTzBzZUxRnBG8Iwfrisq6vdrsNxURvqOaM6-qgOKZE6pIJJg-_3X8UpyntcT4qI1EdF_MD2AhpQg_g--cmRFSH8R-8odt5GNATjGlBg03Jd97ZyYcRdRndZBvajhMMg-9hnNC1nYcJ_fa2H0PyCf2yCVqU1feZ-3K3Ju18P9oh_SyOujzg9HOeFH-ur57q2_Lu8WZbX96VjmM1lZzjRkomGQfWKKFBUOdwRyg0xGJmgWhpWaedY60SDleCVbpjstVYU8s0Oym2a24b7N68Rv9i47sJ1pv_IMTe2Dh5N4CpBKZcVi1TFPPOVlpZqhrJhcIgWUtz1vma9RrD3zl_mdmHOS6vMZQLkZUVXTayVeViSClC97WVYLPUZda6zFKX-awru85WlweAL4dSfIlkH24Nj-U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455645729</pqid></control><display><type>article</type><title>Nearest Neighbor Convex Hull Tensor Classification for Gear Intelligent Fault Diagnosis Based on Multi-Sensor Signals</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cheng, Zhengyang ; Wang, Rongji</creator><creatorcontrib>Cheng, Zhengyang ; Wang, Rongji</creatorcontrib><description>For the feature tensor of multi-sensor signals classification problem in gear intelligent fault diagnosis, a new tensor classifier named nearest neighbor convex hull tensor classification (NNCHTC) is proposed in this paper. First, the convex hull distance from a test tensor sample to the convex hull is taken as the similarity measure for classification. Then, the convex hull distance calculation is transformed into the feature tensor inner product, and CANDECOMP/PARAFAC (CP) decomposition is applied to the calculation process to capture the intrinsic information of the feature tensor. Furthermore, the reduction factor is introduced into NNCHTC to enhance its robustness. Finally, feature tensors are obtained from multi-sensor signals by wavelet packet transform (WPT) and used to identify gear working condition by NNCHTC. The experimental results show that NNCHTC not only can be effectively applied to the gear intelligent fault diagnosis based on multi-sensor signals but also has better robustness.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2943497</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Convexity ; Fault diagnosis ; Feature extraction ; feature tensor ; Gear intelligent fault diagnosis ; Gears ; Intelligent sensors ; Mathematical analysis ; multi-sensor signals ; nearest neighbor convex hull tensor classification ; reduction factor ; Robustness ; Sensors ; Signal classification ; Support vector machines ; Tensors ; Wavelet transforms</subject><ispartof>IEEE access, 2019, Vol.7, p.140781-140793</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-440b663634e3b859e52cc0f12eb1a03ae196a3f9cc3d85c075379f36d9092a393</citedby><cites>FETCH-LOGICAL-c408t-440b663634e3b859e52cc0f12eb1a03ae196a3f9cc3d85c075379f36d9092a393</cites><orcidid>0000-0002-4178-0889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8847293$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Cheng, Zhengyang</creatorcontrib><creatorcontrib>Wang, Rongji</creatorcontrib><title>Nearest Neighbor Convex Hull Tensor Classification for Gear Intelligent Fault Diagnosis Based on Multi-Sensor Signals</title><title>IEEE access</title><addtitle>Access</addtitle><description>For the feature tensor of multi-sensor signals classification problem in gear intelligent fault diagnosis, a new tensor classifier named nearest neighbor convex hull tensor classification (NNCHTC) is proposed in this paper. First, the convex hull distance from a test tensor sample to the convex hull is taken as the similarity measure for classification. Then, the convex hull distance calculation is transformed into the feature tensor inner product, and CANDECOMP/PARAFAC (CP) decomposition is applied to the calculation process to capture the intrinsic information of the feature tensor. Furthermore, the reduction factor is introduced into NNCHTC to enhance its robustness. Finally, feature tensors are obtained from multi-sensor signals by wavelet packet transform (WPT) and used to identify gear working condition by NNCHTC. The experimental results show that NNCHTC not only can be effectively applied to the gear intelligent fault diagnosis based on multi-sensor signals but also has better robustness.</description><subject>Classification</subject><subject>Convexity</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>feature tensor</subject><subject>Gear intelligent fault diagnosis</subject><subject>Gears</subject><subject>Intelligent sensors</subject><subject>Mathematical analysis</subject><subject>multi-sensor signals</subject><subject>nearest neighbor convex hull tensor classification</subject><subject>reduction factor</subject><subject>Robustness</subject><subject>Sensors</subject><subject>Signal classification</subject><subject>Support vector machines</subject><subject>Tensors</subject><subject>Wavelet transforms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtP3TAUhCMEUhHlF7CxxDoXv2MvacrjSjwWl64txzkJvgoxtZMK_j1OgxDeHOvTzBzZUxRnBG8Iwfrisq6vdrsNxURvqOaM6-qgOKZE6pIJJg-_3X8UpyntcT4qI1EdF_MD2AhpQg_g--cmRFSH8R-8odt5GNATjGlBg03Jd97ZyYcRdRndZBvajhMMg-9hnNC1nYcJ_fa2H0PyCf2yCVqU1feZ-3K3Ju18P9oh_SyOujzg9HOeFH-ur57q2_Lu8WZbX96VjmM1lZzjRkomGQfWKKFBUOdwRyg0xGJmgWhpWaedY60SDleCVbpjstVYU8s0Oym2a24b7N68Rv9i47sJ1pv_IMTe2Dh5N4CpBKZcVi1TFPPOVlpZqhrJhcIgWUtz1vma9RrD3zl_mdmHOS6vMZQLkZUVXTayVeViSClC97WVYLPUZda6zFKX-awru85WlweAL4dSfIlkH24Nj-U</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Cheng, Zhengyang</creator><creator>Wang, Rongji</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4178-0889</orcidid></search><sort><creationdate>2019</creationdate><title>Nearest Neighbor Convex Hull Tensor Classification for Gear Intelligent Fault Diagnosis Based on Multi-Sensor Signals</title><author>Cheng, Zhengyang ; Wang, Rongji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-440b663634e3b859e52cc0f12eb1a03ae196a3f9cc3d85c075379f36d9092a393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification</topic><topic>Convexity</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>feature tensor</topic><topic>Gear intelligent fault diagnosis</topic><topic>Gears</topic><topic>Intelligent sensors</topic><topic>Mathematical analysis</topic><topic>multi-sensor signals</topic><topic>nearest neighbor convex hull tensor classification</topic><topic>reduction factor</topic><topic>Robustness</topic><topic>Sensors</topic><topic>Signal classification</topic><topic>Support vector machines</topic><topic>Tensors</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Zhengyang</creatorcontrib><creatorcontrib>Wang, Rongji</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Zhengyang</au><au>Wang, Rongji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nearest Neighbor Convex Hull Tensor Classification for Gear Intelligent Fault Diagnosis Based on Multi-Sensor Signals</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>140781</spage><epage>140793</epage><pages>140781-140793</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>For the feature tensor of multi-sensor signals classification problem in gear intelligent fault diagnosis, a new tensor classifier named nearest neighbor convex hull tensor classification (NNCHTC) is proposed in this paper. First, the convex hull distance from a test tensor sample to the convex hull is taken as the similarity measure for classification. Then, the convex hull distance calculation is transformed into the feature tensor inner product, and CANDECOMP/PARAFAC (CP) decomposition is applied to the calculation process to capture the intrinsic information of the feature tensor. Furthermore, the reduction factor is introduced into NNCHTC to enhance its robustness. Finally, feature tensors are obtained from multi-sensor signals by wavelet packet transform (WPT) and used to identify gear working condition by NNCHTC. The experimental results show that NNCHTC not only can be effectively applied to the gear intelligent fault diagnosis based on multi-sensor signals but also has better robustness.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2943497</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4178-0889</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.140781-140793 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8847293 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Classification Convexity Fault diagnosis Feature extraction feature tensor Gear intelligent fault diagnosis Gears Intelligent sensors Mathematical analysis multi-sensor signals nearest neighbor convex hull tensor classification reduction factor Robustness Sensors Signal classification Support vector machines Tensors Wavelet transforms |
title | Nearest Neighbor Convex Hull Tensor Classification for Gear Intelligent Fault Diagnosis Based on Multi-Sensor Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nearest%20Neighbor%20Convex%20Hull%20Tensor%20Classification%20for%20Gear%20Intelligent%20Fault%20Diagnosis%20Based%20on%20Multi-Sensor%20Signals&rft.jtitle=IEEE%20access&rft.au=Cheng,%20Zhengyang&rft.date=2019&rft.volume=7&rft.spage=140781&rft.epage=140793&rft.pages=140781-140793&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2943497&rft_dat=%3Cproquest_ieee_%3E2455645729%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455645729&rft_id=info:pmid/&rft_ieee_id=8847293&rft_doaj_id=oai_doaj_org_article_7502467d38204fa798a28b64580e63d2&rfr_iscdi=true |