Nearest Neighbor Convex Hull Tensor Classification for Gear Intelligent Fault Diagnosis Based on Multi-Sensor Signals

For the feature tensor of multi-sensor signals classification problem in gear intelligent fault diagnosis, a new tensor classifier named nearest neighbor convex hull tensor classification (NNCHTC) is proposed in this paper. First, the convex hull distance from a test tensor sample to the convex hull...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.140781-140793
Hauptverfasser: Cheng, Zhengyang, Wang, Rongji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140793
container_issue
container_start_page 140781
container_title IEEE access
container_volume 7
creator Cheng, Zhengyang
Wang, Rongji
description For the feature tensor of multi-sensor signals classification problem in gear intelligent fault diagnosis, a new tensor classifier named nearest neighbor convex hull tensor classification (NNCHTC) is proposed in this paper. First, the convex hull distance from a test tensor sample to the convex hull is taken as the similarity measure for classification. Then, the convex hull distance calculation is transformed into the feature tensor inner product, and CANDECOMP/PARAFAC (CP) decomposition is applied to the calculation process to capture the intrinsic information of the feature tensor. Furthermore, the reduction factor is introduced into NNCHTC to enhance its robustness. Finally, feature tensors are obtained from multi-sensor signals by wavelet packet transform (WPT) and used to identify gear working condition by NNCHTC. The experimental results show that NNCHTC not only can be effectively applied to the gear intelligent fault diagnosis based on multi-sensor signals but also has better robustness.
doi_str_mv 10.1109/ACCESS.2019.2943497
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8847293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8847293</ieee_id><doaj_id>oai_doaj_org_article_7502467d38204fa798a28b64580e63d2</doaj_id><sourcerecordid>2455645729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-440b663634e3b859e52cc0f12eb1a03ae196a3f9cc3d85c075379f36d9092a393</originalsourceid><addsrcrecordid>eNpNkUtP3TAUhCMEUhHlF7CxxDoXv2MvacrjSjwWl64txzkJvgoxtZMK_j1OgxDeHOvTzBzZUxRnBG8Iwfrisq6vdrsNxURvqOaM6-qgOKZE6pIJJg-_3X8UpyntcT4qI1EdF_MD2AhpQg_g--cmRFSH8R-8odt5GNATjGlBg03Jd97ZyYcRdRndZBvajhMMg-9hnNC1nYcJ_fa2H0PyCf2yCVqU1feZ-3K3Ju18P9oh_SyOujzg9HOeFH-ur57q2_Lu8WZbX96VjmM1lZzjRkomGQfWKKFBUOdwRyg0xGJmgWhpWaedY60SDleCVbpjstVYU8s0Oym2a24b7N68Rv9i47sJ1pv_IMTe2Dh5N4CpBKZcVi1TFPPOVlpZqhrJhcIgWUtz1vma9RrD3zl_mdmHOS6vMZQLkZUVXTayVeViSClC97WVYLPUZda6zFKX-awru85WlweAL4dSfIlkH24Nj-U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455645729</pqid></control><display><type>article</type><title>Nearest Neighbor Convex Hull Tensor Classification for Gear Intelligent Fault Diagnosis Based on Multi-Sensor Signals</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cheng, Zhengyang ; Wang, Rongji</creator><creatorcontrib>Cheng, Zhengyang ; Wang, Rongji</creatorcontrib><description>For the feature tensor of multi-sensor signals classification problem in gear intelligent fault diagnosis, a new tensor classifier named nearest neighbor convex hull tensor classification (NNCHTC) is proposed in this paper. First, the convex hull distance from a test tensor sample to the convex hull is taken as the similarity measure for classification. Then, the convex hull distance calculation is transformed into the feature tensor inner product, and CANDECOMP/PARAFAC (CP) decomposition is applied to the calculation process to capture the intrinsic information of the feature tensor. Furthermore, the reduction factor is introduced into NNCHTC to enhance its robustness. Finally, feature tensors are obtained from multi-sensor signals by wavelet packet transform (WPT) and used to identify gear working condition by NNCHTC. The experimental results show that NNCHTC not only can be effectively applied to the gear intelligent fault diagnosis based on multi-sensor signals but also has better robustness.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2943497</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Convexity ; Fault diagnosis ; Feature extraction ; feature tensor ; Gear intelligent fault diagnosis ; Gears ; Intelligent sensors ; Mathematical analysis ; multi-sensor signals ; nearest neighbor convex hull tensor classification ; reduction factor ; Robustness ; Sensors ; Signal classification ; Support vector machines ; Tensors ; Wavelet transforms</subject><ispartof>IEEE access, 2019, Vol.7, p.140781-140793</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-440b663634e3b859e52cc0f12eb1a03ae196a3f9cc3d85c075379f36d9092a393</citedby><cites>FETCH-LOGICAL-c408t-440b663634e3b859e52cc0f12eb1a03ae196a3f9cc3d85c075379f36d9092a393</cites><orcidid>0000-0002-4178-0889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8847293$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Cheng, Zhengyang</creatorcontrib><creatorcontrib>Wang, Rongji</creatorcontrib><title>Nearest Neighbor Convex Hull Tensor Classification for Gear Intelligent Fault Diagnosis Based on Multi-Sensor Signals</title><title>IEEE access</title><addtitle>Access</addtitle><description>For the feature tensor of multi-sensor signals classification problem in gear intelligent fault diagnosis, a new tensor classifier named nearest neighbor convex hull tensor classification (NNCHTC) is proposed in this paper. First, the convex hull distance from a test tensor sample to the convex hull is taken as the similarity measure for classification. Then, the convex hull distance calculation is transformed into the feature tensor inner product, and CANDECOMP/PARAFAC (CP) decomposition is applied to the calculation process to capture the intrinsic information of the feature tensor. Furthermore, the reduction factor is introduced into NNCHTC to enhance its robustness. Finally, feature tensors are obtained from multi-sensor signals by wavelet packet transform (WPT) and used to identify gear working condition by NNCHTC. The experimental results show that NNCHTC not only can be effectively applied to the gear intelligent fault diagnosis based on multi-sensor signals but also has better robustness.</description><subject>Classification</subject><subject>Convexity</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>feature tensor</subject><subject>Gear intelligent fault diagnosis</subject><subject>Gears</subject><subject>Intelligent sensors</subject><subject>Mathematical analysis</subject><subject>multi-sensor signals</subject><subject>nearest neighbor convex hull tensor classification</subject><subject>reduction factor</subject><subject>Robustness</subject><subject>Sensors</subject><subject>Signal classification</subject><subject>Support vector machines</subject><subject>Tensors</subject><subject>Wavelet transforms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtP3TAUhCMEUhHlF7CxxDoXv2MvacrjSjwWl64txzkJvgoxtZMK_j1OgxDeHOvTzBzZUxRnBG8Iwfrisq6vdrsNxURvqOaM6-qgOKZE6pIJJg-_3X8UpyntcT4qI1EdF_MD2AhpQg_g--cmRFSH8R-8odt5GNATjGlBg03Jd97ZyYcRdRndZBvajhMMg-9hnNC1nYcJ_fa2H0PyCf2yCVqU1feZ-3K3Ju18P9oh_SyOujzg9HOeFH-ur57q2_Lu8WZbX96VjmM1lZzjRkomGQfWKKFBUOdwRyg0xGJmgWhpWaedY60SDleCVbpjstVYU8s0Oym2a24b7N68Rv9i47sJ1pv_IMTe2Dh5N4CpBKZcVi1TFPPOVlpZqhrJhcIgWUtz1vma9RrD3zl_mdmHOS6vMZQLkZUVXTayVeViSClC97WVYLPUZda6zFKX-awru85WlweAL4dSfIlkH24Nj-U</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Cheng, Zhengyang</creator><creator>Wang, Rongji</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4178-0889</orcidid></search><sort><creationdate>2019</creationdate><title>Nearest Neighbor Convex Hull Tensor Classification for Gear Intelligent Fault Diagnosis Based on Multi-Sensor Signals</title><author>Cheng, Zhengyang ; Wang, Rongji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-440b663634e3b859e52cc0f12eb1a03ae196a3f9cc3d85c075379f36d9092a393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification</topic><topic>Convexity</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>feature tensor</topic><topic>Gear intelligent fault diagnosis</topic><topic>Gears</topic><topic>Intelligent sensors</topic><topic>Mathematical analysis</topic><topic>multi-sensor signals</topic><topic>nearest neighbor convex hull tensor classification</topic><topic>reduction factor</topic><topic>Robustness</topic><topic>Sensors</topic><topic>Signal classification</topic><topic>Support vector machines</topic><topic>Tensors</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Zhengyang</creatorcontrib><creatorcontrib>Wang, Rongji</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Zhengyang</au><au>Wang, Rongji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nearest Neighbor Convex Hull Tensor Classification for Gear Intelligent Fault Diagnosis Based on Multi-Sensor Signals</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>140781</spage><epage>140793</epage><pages>140781-140793</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>For the feature tensor of multi-sensor signals classification problem in gear intelligent fault diagnosis, a new tensor classifier named nearest neighbor convex hull tensor classification (NNCHTC) is proposed in this paper. First, the convex hull distance from a test tensor sample to the convex hull is taken as the similarity measure for classification. Then, the convex hull distance calculation is transformed into the feature tensor inner product, and CANDECOMP/PARAFAC (CP) decomposition is applied to the calculation process to capture the intrinsic information of the feature tensor. Furthermore, the reduction factor is introduced into NNCHTC to enhance its robustness. Finally, feature tensors are obtained from multi-sensor signals by wavelet packet transform (WPT) and used to identify gear working condition by NNCHTC. The experimental results show that NNCHTC not only can be effectively applied to the gear intelligent fault diagnosis based on multi-sensor signals but also has better robustness.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2943497</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4178-0889</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.140781-140793
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8847293
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Classification
Convexity
Fault diagnosis
Feature extraction
feature tensor
Gear intelligent fault diagnosis
Gears
Intelligent sensors
Mathematical analysis
multi-sensor signals
nearest neighbor convex hull tensor classification
reduction factor
Robustness
Sensors
Signal classification
Support vector machines
Tensors
Wavelet transforms
title Nearest Neighbor Convex Hull Tensor Classification for Gear Intelligent Fault Diagnosis Based on Multi-Sensor Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nearest%20Neighbor%20Convex%20Hull%20Tensor%20Classification%20for%20Gear%20Intelligent%20Fault%20Diagnosis%20Based%20on%20Multi-Sensor%20Signals&rft.jtitle=IEEE%20access&rft.au=Cheng,%20Zhengyang&rft.date=2019&rft.volume=7&rft.spage=140781&rft.epage=140793&rft.pages=140781-140793&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2943497&rft_dat=%3Cproquest_ieee_%3E2455645729%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455645729&rft_id=info:pmid/&rft_ieee_id=8847293&rft_doaj_id=oai_doaj_org_article_7502467d38204fa798a28b64580e63d2&rfr_iscdi=true