Design considerations for low-margin elastic optical networks in the nonlinear regime [Invited]

We demonstrate from a system design perspective that nonlinearity can be exploited to minimize the impact of system margins on system performance for both point-to-point links and elastic optical networks. A nonlinear interaction causes a 2 dB reduction in launch power to be reduced to \lt\!{0.25}\,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optical communications and networking 2019-10, Vol.11 (10), p.C76-C85, Article C76
Hauptverfasser: Savory, Seb J., Vincent, Robert J., Ives, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page C85
container_issue 10
container_start_page C76
container_title Journal of optical communications and networking
container_volume 11
creator Savory, Seb J.
Vincent, Robert J.
Ives, David J.
description We demonstrate from a system design perspective that nonlinearity can be exploited to minimize the impact of system margins on system performance for both point-to-point links and elastic optical networks. A nonlinear interaction causes a 2 dB reduction in launch power to be reduced to \lt\!{0.25}\,\,{\rm{dB}} signal-to-noise ratio (SNR) penalty, and likewise, a 2 dB peak–peak (pk-pk) perturbation to the output power of an optical amplifier is reduced to \lt\!{0.25}\,\,{\rm{dB}} SNR penalty (for 5, 10, and 20 spans). Extending this to a gain ripple of 1 dB pk-pk with an internode spacing of {5} \times {80}\,\,{\rm{km}}, {10} \times {80}\,\,{\rm{km}}, and {20} \times {80}\,\,{\rm{km}}, the penalty is 0.4 dB, 1.5 dB, and 5.1 dB, respectively, with pre-emphasis reducing this to 0.01 dB, 0.3 dB, and 1.2 dB, respectively. In elastic optical networks, we consider the nonlinear relationship among SNR, margin, and the fraction of capacity available. We consider scaling internode distances of a 9-node German scale network (DT9), such that the initial network diameter increases from 1120 km to 6720 km (six-fold scaling). We generate 1000 different topologies based on the scaled DT9 node locations to quantify the impact of margin. For the unscaled DT9 network, a 3 dB margin results in, on average, a 21% reduction in network throughput; however, when the internode spacing is increased six-fold to a continental scale network, the network throughput is reduced by 40%, on average, for the same 3 dB margin.
doi_str_mv 10.1364/JOCN.11.000C76
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8836408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8836408</ieee_id><sourcerecordid>2292983374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-e7c9c0aea14af02aac3c44799f3c0773c349191b2d2ccfe42aab1557b8afb64d3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxSMEEqWwsrBYYk6wYzeOR1S-iiq6wISQ5TiX4hLsYrtU_Pe4FHVAYrk76d7vnu5l2SnBBaEVu7ifjR8KQgqM8ZhXe9mACEZzXFGxv5tLfJgdhbDAuOKEjAaZvIJg5hZpZ4Npwato0oQ651Hv1vm78nNjEfQqRKORW6aqemQhrp1_Cyjt4isg62xvLCiPPMzNO6Dnif00EdqX4-ygU32Ak98-zJ5urh_Hd_l0djsZX05zXdY85sC10FiBIkx1uFRKU80YF6KjGnNONWWCCNKUbal1BywpGjIa8aZWXVOxlg6z8-3dpXcfKwhRLtzK22Qpy1KUoqaUs6QqtirtXQgeOrn0Jv34JQmWmxDlJkRJiNyGmAD2B9Am_mQUvTL9_9jZFjMAsPOo6yTFNf0GxmCAfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2292983374</pqid></control><display><type>article</type><title>Design considerations for low-margin elastic optical networks in the nonlinear regime [Invited]</title><source>IEEE Electronic Library (IEL)</source><creator>Savory, Seb J. ; Vincent, Robert J. ; Ives, David J.</creator><creatorcontrib>Savory, Seb J. ; Vincent, Robert J. ; Ives, David J.</creatorcontrib><description>We demonstrate from a system design perspective that nonlinearity can be exploited to minimize the impact of system margins on system performance for both point-to-point links and elastic optical networks. A nonlinear interaction causes a 2 dB reduction in launch power to be reduced to \lt\!{0.25}\,\,{\rm{dB}} signal-to-noise ratio (SNR) penalty, and likewise, a 2 dB peak–peak (pk-pk) perturbation to the output power of an optical amplifier is reduced to \lt\!{0.25}\,\,{\rm{dB}} SNR penalty (for 5, 10, and 20 spans). Extending this to a gain ripple of 1 dB pk-pk with an internode spacing of {5} \times {80}\,\,{\rm{km}}, {10} \times {80}\,\,{\rm{km}}, and {20} \times {80}\,\,{\rm{km}}, the penalty is 0.4 dB, 1.5 dB, and 5.1 dB, respectively, with pre-emphasis reducing this to 0.01 dB, 0.3 dB, and 1.2 dB, respectively. In elastic optical networks, we consider the nonlinear relationship among SNR, margin, and the fraction of capacity available. We consider scaling internode distances of a 9-node German scale network (DT9), such that the initial network diameter increases from 1120 km to 6720 km (six-fold scaling). We generate 1000 different topologies based on the scaled DT9 node locations to quantify the impact of margin. For the unscaled DT9 network, a 3 dB margin results in, on average, a 21% reduction in network throughput; however, when the internode spacing is increased six-fold to a continental scale network, the network throughput is reduced by 40%, on average, for the same 3 dB margin.</description><identifier>ISSN: 1943-0620</identifier><identifier>ISSN: 1943-0639</identifier><identifier>EISSN: 1943-0639</identifier><identifier>DOI: 10.1364/JOCN.11.000C76</identifier><identifier>CODEN: JOCNBB</identifier><language>eng</language><publisher>Piscataway: Optica Publishing Group</publisher><subject>Erbium-doped fiber amplifiers ; Gain ; Noise levels ; Nonlinear optics ; Nonlinearity ; Optical communication ; Optical fiber networks ; Perturbation ; Perturbation methods ; Reduction ; Scaling ; Signal to noise ratio ; Systems design ; Topology</subject><ispartof>Journal of optical communications and networking, 2019-10, Vol.11 (10), p.C76-C85, Article C76</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-e7c9c0aea14af02aac3c44799f3c0773c349191b2d2ccfe42aab1557b8afb64d3</citedby><cites>FETCH-LOGICAL-c287t-e7c9c0aea14af02aac3c44799f3c0773c349191b2d2ccfe42aab1557b8afb64d3</cites><orcidid>0000-0002-6803-718X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8836408$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8836408$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Savory, Seb J.</creatorcontrib><creatorcontrib>Vincent, Robert J.</creatorcontrib><creatorcontrib>Ives, David J.</creatorcontrib><title>Design considerations for low-margin elastic optical networks in the nonlinear regime [Invited]</title><title>Journal of optical communications and networking</title><addtitle>jocn</addtitle><description>We demonstrate from a system design perspective that nonlinearity can be exploited to minimize the impact of system margins on system performance for both point-to-point links and elastic optical networks. A nonlinear interaction causes a 2 dB reduction in launch power to be reduced to \lt\!{0.25}\,\,{\rm{dB}} signal-to-noise ratio (SNR) penalty, and likewise, a 2 dB peak–peak (pk-pk) perturbation to the output power of an optical amplifier is reduced to \lt\!{0.25}\,\,{\rm{dB}} SNR penalty (for 5, 10, and 20 spans). Extending this to a gain ripple of 1 dB pk-pk with an internode spacing of {5} \times {80}\,\,{\rm{km}}, {10} \times {80}\,\,{\rm{km}}, and {20} \times {80}\,\,{\rm{km}}, the penalty is 0.4 dB, 1.5 dB, and 5.1 dB, respectively, with pre-emphasis reducing this to 0.01 dB, 0.3 dB, and 1.2 dB, respectively. In elastic optical networks, we consider the nonlinear relationship among SNR, margin, and the fraction of capacity available. We consider scaling internode distances of a 9-node German scale network (DT9), such that the initial network diameter increases from 1120 km to 6720 km (six-fold scaling). We generate 1000 different topologies based on the scaled DT9 node locations to quantify the impact of margin. For the unscaled DT9 network, a 3 dB margin results in, on average, a 21% reduction in network throughput; however, when the internode spacing is increased six-fold to a continental scale network, the network throughput is reduced by 40%, on average, for the same 3 dB margin.</description><subject>Erbium-doped fiber amplifiers</subject><subject>Gain</subject><subject>Noise levels</subject><subject>Nonlinear optics</subject><subject>Nonlinearity</subject><subject>Optical communication</subject><subject>Optical fiber networks</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Reduction</subject><subject>Scaling</subject><subject>Signal to noise ratio</subject><subject>Systems design</subject><subject>Topology</subject><issn>1943-0620</issn><issn>1943-0639</issn><issn>1943-0639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp1kL1PwzAQxSMEEqWwsrBYYk6wYzeOR1S-iiq6wISQ5TiX4hLsYrtU_Pe4FHVAYrk76d7vnu5l2SnBBaEVu7ifjR8KQgqM8ZhXe9mACEZzXFGxv5tLfJgdhbDAuOKEjAaZvIJg5hZpZ4Npwato0oQ651Hv1vm78nNjEfQqRKORW6aqemQhrp1_Cyjt4isg62xvLCiPPMzNO6Dnif00EdqX4-ygU32Ak98-zJ5urh_Hd_l0djsZX05zXdY85sC10FiBIkx1uFRKU80YF6KjGnNONWWCCNKUbal1BywpGjIa8aZWXVOxlg6z8-3dpXcfKwhRLtzK22Qpy1KUoqaUs6QqtirtXQgeOrn0Jv34JQmWmxDlJkRJiNyGmAD2B9Am_mQUvTL9_9jZFjMAsPOo6yTFNf0GxmCAfw</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Savory, Seb J.</creator><creator>Vincent, Robert J.</creator><creator>Ives, David J.</creator><general>Optica Publishing Group</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6803-718X</orcidid></search><sort><creationdate>20191001</creationdate><title>Design considerations for low-margin elastic optical networks in the nonlinear regime [Invited]</title><author>Savory, Seb J. ; Vincent, Robert J. ; Ives, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-e7c9c0aea14af02aac3c44799f3c0773c349191b2d2ccfe42aab1557b8afb64d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Erbium-doped fiber amplifiers</topic><topic>Gain</topic><topic>Noise levels</topic><topic>Nonlinear optics</topic><topic>Nonlinearity</topic><topic>Optical communication</topic><topic>Optical fiber networks</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Reduction</topic><topic>Scaling</topic><topic>Signal to noise ratio</topic><topic>Systems design</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savory, Seb J.</creatorcontrib><creatorcontrib>Vincent, Robert J.</creatorcontrib><creatorcontrib>Ives, David J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optical communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Savory, Seb J.</au><au>Vincent, Robert J.</au><au>Ives, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design considerations for low-margin elastic optical networks in the nonlinear regime [Invited]</atitle><jtitle>Journal of optical communications and networking</jtitle><stitle>jocn</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>11</volume><issue>10</issue><spage>C76</spage><epage>C85</epage><pages>C76-C85</pages><artnum>C76</artnum><issn>1943-0620</issn><issn>1943-0639</issn><eissn>1943-0639</eissn><coden>JOCNBB</coden><abstract>We demonstrate from a system design perspective that nonlinearity can be exploited to minimize the impact of system margins on system performance for both point-to-point links and elastic optical networks. A nonlinear interaction causes a 2 dB reduction in launch power to be reduced to \lt\!{0.25}\,\,{\rm{dB}} signal-to-noise ratio (SNR) penalty, and likewise, a 2 dB peak–peak (pk-pk) perturbation to the output power of an optical amplifier is reduced to \lt\!{0.25}\,\,{\rm{dB}} SNR penalty (for 5, 10, and 20 spans). Extending this to a gain ripple of 1 dB pk-pk with an internode spacing of {5} \times {80}\,\,{\rm{km}}, {10} \times {80}\,\,{\rm{km}}, and {20} \times {80}\,\,{\rm{km}}, the penalty is 0.4 dB, 1.5 dB, and 5.1 dB, respectively, with pre-emphasis reducing this to 0.01 dB, 0.3 dB, and 1.2 dB, respectively. In elastic optical networks, we consider the nonlinear relationship among SNR, margin, and the fraction of capacity available. We consider scaling internode distances of a 9-node German scale network (DT9), such that the initial network diameter increases from 1120 km to 6720 km (six-fold scaling). We generate 1000 different topologies based on the scaled DT9 node locations to quantify the impact of margin. For the unscaled DT9 network, a 3 dB margin results in, on average, a 21% reduction in network throughput; however, when the internode spacing is increased six-fold to a continental scale network, the network throughput is reduced by 40%, on average, for the same 3 dB margin.</abstract><cop>Piscataway</cop><pub>Optica Publishing Group</pub><doi>10.1364/JOCN.11.000C76</doi><orcidid>https://orcid.org/0000-0002-6803-718X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1943-0620
ispartof Journal of optical communications and networking, 2019-10, Vol.11 (10), p.C76-C85, Article C76
issn 1943-0620
1943-0639
1943-0639
language eng
recordid cdi_ieee_primary_8836408
source IEEE Electronic Library (IEL)
subjects Erbium-doped fiber amplifiers
Gain
Noise levels
Nonlinear optics
Nonlinearity
Optical communication
Optical fiber networks
Perturbation
Perturbation methods
Reduction
Scaling
Signal to noise ratio
Systems design
Topology
title Design considerations for low-margin elastic optical networks in the nonlinear regime [Invited]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20considerations%20for%20low-margin%20elastic%20optical%20networks%20in%20the%20nonlinear%20regime%20%5BInvited%5D&rft.jtitle=Journal%20of%20optical%20communications%20and%20networking&rft.au=Savory,%20Seb%20J.&rft.date=2019-10-01&rft.volume=11&rft.issue=10&rft.spage=C76&rft.epage=C85&rft.pages=C76-C85&rft.artnum=C76&rft.issn=1943-0620&rft.eissn=1943-0639&rft.coden=JOCNBB&rft_id=info:doi/10.1364/JOCN.11.000C76&rft_dat=%3Cproquest_RIE%3E2292983374%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2292983374&rft_id=info:pmid/&rft_ieee_id=8836408&rfr_iscdi=true