Design considerations for low-margin elastic optical networks in the nonlinear regime [Invited]
We demonstrate from a system design perspective that nonlinearity can be exploited to minimize the impact of system margins on system performance for both point-to-point links and elastic optical networks. A nonlinear interaction causes a 2 dB reduction in launch power to be reduced to \lt\!{0.25}\,...
Gespeichert in:
Veröffentlicht in: | Journal of optical communications and networking 2019-10, Vol.11 (10), p.C76-C85, Article C76 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | C85 |
---|---|
container_issue | 10 |
container_start_page | C76 |
container_title | Journal of optical communications and networking |
container_volume | 11 |
creator | Savory, Seb J. Vincent, Robert J. Ives, David J. |
description | We demonstrate from a system design perspective that nonlinearity can be exploited to minimize the impact of system margins on system performance for both point-to-point links and elastic optical networks. A nonlinear interaction causes a 2 dB reduction in launch power to be reduced to \lt\!{0.25}\,\,{\rm{dB}} signal-to-noise ratio (SNR) penalty, and likewise, a 2 dB peak–peak (pk-pk) perturbation to the output power of an optical amplifier is reduced to \lt\!{0.25}\,\,{\rm{dB}} SNR penalty (for 5, 10, and 20 spans). Extending this to a gain ripple of 1 dB pk-pk with an internode spacing of {5} \times {80}\,\,{\rm{km}}, {10} \times {80}\,\,{\rm{km}}, and {20} \times {80}\,\,{\rm{km}}, the penalty is 0.4 dB, 1.5 dB, and 5.1 dB, respectively, with pre-emphasis reducing this to 0.01 dB, 0.3 dB, and 1.2 dB, respectively. In elastic optical networks, we consider the nonlinear relationship among SNR, margin, and the fraction of capacity available. We consider scaling internode distances of a 9-node German scale network (DT9), such that the initial network diameter increases from 1120 km to 6720 km (six-fold scaling). We generate 1000 different topologies based on the scaled DT9 node locations to quantify the impact of margin. For the unscaled DT9 network, a 3 dB margin results in, on average, a 21% reduction in network throughput; however, when the internode spacing is increased six-fold to a continental scale network, the network throughput is reduced by 40%, on average, for the same 3 dB margin. |
doi_str_mv | 10.1364/JOCN.11.000C76 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8836408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8836408</ieee_id><sourcerecordid>2292983374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-e7c9c0aea14af02aac3c44799f3c0773c349191b2d2ccfe42aab1557b8afb64d3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxSMEEqWwsrBYYk6wYzeOR1S-iiq6wISQ5TiX4hLsYrtU_Pe4FHVAYrk76d7vnu5l2SnBBaEVu7ifjR8KQgqM8ZhXe9mACEZzXFGxv5tLfJgdhbDAuOKEjAaZvIJg5hZpZ4Npwato0oQ651Hv1vm78nNjEfQqRKORW6aqemQhrp1_Cyjt4isg62xvLCiPPMzNO6Dnif00EdqX4-ygU32Ak98-zJ5urh_Hd_l0djsZX05zXdY85sC10FiBIkx1uFRKU80YF6KjGnNONWWCCNKUbal1BywpGjIa8aZWXVOxlg6z8-3dpXcfKwhRLtzK22Qpy1KUoqaUs6QqtirtXQgeOrn0Jv34JQmWmxDlJkRJiNyGmAD2B9Am_mQUvTL9_9jZFjMAsPOo6yTFNf0GxmCAfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2292983374</pqid></control><display><type>article</type><title>Design considerations for low-margin elastic optical networks in the nonlinear regime [Invited]</title><source>IEEE Electronic Library (IEL)</source><creator>Savory, Seb J. ; Vincent, Robert J. ; Ives, David J.</creator><creatorcontrib>Savory, Seb J. ; Vincent, Robert J. ; Ives, David J.</creatorcontrib><description>We demonstrate from a system design perspective that nonlinearity can be exploited to minimize the impact of system margins on system performance for both point-to-point links and elastic optical networks. A nonlinear interaction causes a 2 dB reduction in launch power to be reduced to \lt\!{0.25}\,\,{\rm{dB}} signal-to-noise ratio (SNR) penalty, and likewise, a 2 dB peak–peak (pk-pk) perturbation to the output power of an optical amplifier is reduced to \lt\!{0.25}\,\,{\rm{dB}} SNR penalty (for 5, 10, and 20 spans). Extending this to a gain ripple of 1 dB pk-pk with an internode spacing of {5} \times {80}\,\,{\rm{km}}, {10} \times {80}\,\,{\rm{km}}, and {20} \times {80}\,\,{\rm{km}}, the penalty is 0.4 dB, 1.5 dB, and 5.1 dB, respectively, with pre-emphasis reducing this to 0.01 dB, 0.3 dB, and 1.2 dB, respectively. In elastic optical networks, we consider the nonlinear relationship among SNR, margin, and the fraction of capacity available. We consider scaling internode distances of a 9-node German scale network (DT9), such that the initial network diameter increases from 1120 km to 6720 km (six-fold scaling). We generate 1000 different topologies based on the scaled DT9 node locations to quantify the impact of margin. For the unscaled DT9 network, a 3 dB margin results in, on average, a 21% reduction in network throughput; however, when the internode spacing is increased six-fold to a continental scale network, the network throughput is reduced by 40%, on average, for the same 3 dB margin.</description><identifier>ISSN: 1943-0620</identifier><identifier>ISSN: 1943-0639</identifier><identifier>EISSN: 1943-0639</identifier><identifier>DOI: 10.1364/JOCN.11.000C76</identifier><identifier>CODEN: JOCNBB</identifier><language>eng</language><publisher>Piscataway: Optica Publishing Group</publisher><subject>Erbium-doped fiber amplifiers ; Gain ; Noise levels ; Nonlinear optics ; Nonlinearity ; Optical communication ; Optical fiber networks ; Perturbation ; Perturbation methods ; Reduction ; Scaling ; Signal to noise ratio ; Systems design ; Topology</subject><ispartof>Journal of optical communications and networking, 2019-10, Vol.11 (10), p.C76-C85, Article C76</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-e7c9c0aea14af02aac3c44799f3c0773c349191b2d2ccfe42aab1557b8afb64d3</citedby><cites>FETCH-LOGICAL-c287t-e7c9c0aea14af02aac3c44799f3c0773c349191b2d2ccfe42aab1557b8afb64d3</cites><orcidid>0000-0002-6803-718X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8836408$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8836408$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Savory, Seb J.</creatorcontrib><creatorcontrib>Vincent, Robert J.</creatorcontrib><creatorcontrib>Ives, David J.</creatorcontrib><title>Design considerations for low-margin elastic optical networks in the nonlinear regime [Invited]</title><title>Journal of optical communications and networking</title><addtitle>jocn</addtitle><description>We demonstrate from a system design perspective that nonlinearity can be exploited to minimize the impact of system margins on system performance for both point-to-point links and elastic optical networks. A nonlinear interaction causes a 2 dB reduction in launch power to be reduced to \lt\!{0.25}\,\,{\rm{dB}} signal-to-noise ratio (SNR) penalty, and likewise, a 2 dB peak–peak (pk-pk) perturbation to the output power of an optical amplifier is reduced to \lt\!{0.25}\,\,{\rm{dB}} SNR penalty (for 5, 10, and 20 spans). Extending this to a gain ripple of 1 dB pk-pk with an internode spacing of {5} \times {80}\,\,{\rm{km}}, {10} \times {80}\,\,{\rm{km}}, and {20} \times {80}\,\,{\rm{km}}, the penalty is 0.4 dB, 1.5 dB, and 5.1 dB, respectively, with pre-emphasis reducing this to 0.01 dB, 0.3 dB, and 1.2 dB, respectively. In elastic optical networks, we consider the nonlinear relationship among SNR, margin, and the fraction of capacity available. We consider scaling internode distances of a 9-node German scale network (DT9), such that the initial network diameter increases from 1120 km to 6720 km (six-fold scaling). We generate 1000 different topologies based on the scaled DT9 node locations to quantify the impact of margin. For the unscaled DT9 network, a 3 dB margin results in, on average, a 21% reduction in network throughput; however, when the internode spacing is increased six-fold to a continental scale network, the network throughput is reduced by 40%, on average, for the same 3 dB margin.</description><subject>Erbium-doped fiber amplifiers</subject><subject>Gain</subject><subject>Noise levels</subject><subject>Nonlinear optics</subject><subject>Nonlinearity</subject><subject>Optical communication</subject><subject>Optical fiber networks</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Reduction</subject><subject>Scaling</subject><subject>Signal to noise ratio</subject><subject>Systems design</subject><subject>Topology</subject><issn>1943-0620</issn><issn>1943-0639</issn><issn>1943-0639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp1kL1PwzAQxSMEEqWwsrBYYk6wYzeOR1S-iiq6wISQ5TiX4hLsYrtU_Pe4FHVAYrk76d7vnu5l2SnBBaEVu7ifjR8KQgqM8ZhXe9mACEZzXFGxv5tLfJgdhbDAuOKEjAaZvIJg5hZpZ4Npwato0oQ651Hv1vm78nNjEfQqRKORW6aqemQhrp1_Cyjt4isg62xvLCiPPMzNO6Dnif00EdqX4-ygU32Ak98-zJ5urh_Hd_l0djsZX05zXdY85sC10FiBIkx1uFRKU80YF6KjGnNONWWCCNKUbal1BywpGjIa8aZWXVOxlg6z8-3dpXcfKwhRLtzK22Qpy1KUoqaUs6QqtirtXQgeOrn0Jv34JQmWmxDlJkRJiNyGmAD2B9Am_mQUvTL9_9jZFjMAsPOo6yTFNf0GxmCAfw</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Savory, Seb J.</creator><creator>Vincent, Robert J.</creator><creator>Ives, David J.</creator><general>Optica Publishing Group</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6803-718X</orcidid></search><sort><creationdate>20191001</creationdate><title>Design considerations for low-margin elastic optical networks in the nonlinear regime [Invited]</title><author>Savory, Seb J. ; Vincent, Robert J. ; Ives, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-e7c9c0aea14af02aac3c44799f3c0773c349191b2d2ccfe42aab1557b8afb64d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Erbium-doped fiber amplifiers</topic><topic>Gain</topic><topic>Noise levels</topic><topic>Nonlinear optics</topic><topic>Nonlinearity</topic><topic>Optical communication</topic><topic>Optical fiber networks</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Reduction</topic><topic>Scaling</topic><topic>Signal to noise ratio</topic><topic>Systems design</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savory, Seb J.</creatorcontrib><creatorcontrib>Vincent, Robert J.</creatorcontrib><creatorcontrib>Ives, David J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optical communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Savory, Seb J.</au><au>Vincent, Robert J.</au><au>Ives, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design considerations for low-margin elastic optical networks in the nonlinear regime [Invited]</atitle><jtitle>Journal of optical communications and networking</jtitle><stitle>jocn</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>11</volume><issue>10</issue><spage>C76</spage><epage>C85</epage><pages>C76-C85</pages><artnum>C76</artnum><issn>1943-0620</issn><issn>1943-0639</issn><eissn>1943-0639</eissn><coden>JOCNBB</coden><abstract>We demonstrate from a system design perspective that nonlinearity can be exploited to minimize the impact of system margins on system performance for both point-to-point links and elastic optical networks. A nonlinear interaction causes a 2 dB reduction in launch power to be reduced to \lt\!{0.25}\,\,{\rm{dB}} signal-to-noise ratio (SNR) penalty, and likewise, a 2 dB peak–peak (pk-pk) perturbation to the output power of an optical amplifier is reduced to \lt\!{0.25}\,\,{\rm{dB}} SNR penalty (for 5, 10, and 20 spans). Extending this to a gain ripple of 1 dB pk-pk with an internode spacing of {5} \times {80}\,\,{\rm{km}}, {10} \times {80}\,\,{\rm{km}}, and {20} \times {80}\,\,{\rm{km}}, the penalty is 0.4 dB, 1.5 dB, and 5.1 dB, respectively, with pre-emphasis reducing this to 0.01 dB, 0.3 dB, and 1.2 dB, respectively. In elastic optical networks, we consider the nonlinear relationship among SNR, margin, and the fraction of capacity available. We consider scaling internode distances of a 9-node German scale network (DT9), such that the initial network diameter increases from 1120 km to 6720 km (six-fold scaling). We generate 1000 different topologies based on the scaled DT9 node locations to quantify the impact of margin. For the unscaled DT9 network, a 3 dB margin results in, on average, a 21% reduction in network throughput; however, when the internode spacing is increased six-fold to a continental scale network, the network throughput is reduced by 40%, on average, for the same 3 dB margin.</abstract><cop>Piscataway</cop><pub>Optica Publishing Group</pub><doi>10.1364/JOCN.11.000C76</doi><orcidid>https://orcid.org/0000-0002-6803-718X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1943-0620 |
ispartof | Journal of optical communications and networking, 2019-10, Vol.11 (10), p.C76-C85, Article C76 |
issn | 1943-0620 1943-0639 1943-0639 |
language | eng |
recordid | cdi_ieee_primary_8836408 |
source | IEEE Electronic Library (IEL) |
subjects | Erbium-doped fiber amplifiers Gain Noise levels Nonlinear optics Nonlinearity Optical communication Optical fiber networks Perturbation Perturbation methods Reduction Scaling Signal to noise ratio Systems design Topology |
title | Design considerations for low-margin elastic optical networks in the nonlinear regime [Invited] |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20considerations%20for%20low-margin%20elastic%20optical%20networks%20in%20the%20nonlinear%20regime%20%5BInvited%5D&rft.jtitle=Journal%20of%20optical%20communications%20and%20networking&rft.au=Savory,%20Seb%20J.&rft.date=2019-10-01&rft.volume=11&rft.issue=10&rft.spage=C76&rft.epage=C85&rft.pages=C76-C85&rft.artnum=C76&rft.issn=1943-0620&rft.eissn=1943-0639&rft.coden=JOCNBB&rft_id=info:doi/10.1364/JOCN.11.000C76&rft_dat=%3Cproquest_RIE%3E2292983374%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2292983374&rft_id=info:pmid/&rft_ieee_id=8836408&rfr_iscdi=true |