Virtual Network Embedding Algorithm via Diffusion Wavelet
The great success of the Internet has promoted the development of digital industries and increased the demand for communication bandwidth. For example, ultrahigh-definition videos and vehicle networks require fast bandwidth speed and increase network connection density, respectively. High-bandwidth...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019-01, Vol.7, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 7 |
creator | Zhuang, Lei Tian, Shuaikui He, Mengyang Wang, Guoqing Liu, Wentan Ma, Ling |
description | The great success of the Internet has promoted the development of digital industries and increased the demand for communication bandwidth. For example, ultrahigh-definition videos and vehicle networks require fast bandwidth speed and increase network connection density, respectively. High-bandwidth and high-density parallel communication drive the rapid development of network virtualization and 5G/6G technology. In a network virtualization environment, this new demand also brings new link resource allocation difficulties in existing substrate networks. To solve this far-reaching problem, this paper proposes a virtual network embedding algorithm via diffusion wavelet (VNE_DW), which is an unsupervised structure learning algorithm. Through the diffusion wavelet, the topology structure of nodes, connection density, and link volume among the nodes are comprehensively evaluated. Nodes that facilitate the link mapping success rate are preferentially selected. Experimental results demonstrate that the mapping success rate and revenue-cost ratio of VNE_DW outperform other state-of-the-art algorithms with high bandwidth and density. |
doi_str_mv | 10.1109/ACCESS.2019.2940971 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8835914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8835914</ieee_id><doaj_id>oai_doaj_org_article_b401ae803e9548f4ae9c475a55a7e739</doaj_id><sourcerecordid>2455603772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-127e6730ba40b7817d4b6980ea65909b627ac60202350755b1b11581fd6c25613</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhhujiUT5BVyaeAZnv3ePBFFJiB7w47jZtlNcLCxuC8Z_b7GEOJeZvJn3ncmTJAMCI0LA3I4nk-liMaJAzIgaDkaRs6RHiTRDJpg8_zdfJv26XkFbupWE6iXmzcdm56r0CZvvED_T6TrDovCbZTquliH65mOd7r1L73xZ7mofNum722OFzXVyUbqqxv6xXyWv99OXyeNw_vwwm4znw5yDboaEKpSKQeY4ZEoTVfBMGg3opDBgMkmVyyVQoEyAEiIjGSFCk7KQORWSsKtk1uUWwa3sNvq1iz82OG__hBCX1sXG5xXajANxqIGhEVyX3KHJuRJOCKdQMdNm3XRZ2xi-dlg3dhV2cdO-bykXQgJTirZbrNvKY6jriOXpKgF7QG475PaA3B6Rt65B5_KIeHJozYQhnP0CZ8d5tg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455603772</pqid></control><display><type>article</type><title>Virtual Network Embedding Algorithm via Diffusion Wavelet</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhuang, Lei ; Tian, Shuaikui ; He, Mengyang ; Wang, Guoqing ; Liu, Wentan ; Ma, Ling</creator><creatorcontrib>Zhuang, Lei ; Tian, Shuaikui ; He, Mengyang ; Wang, Guoqing ; Liu, Wentan ; Ma, Ling</creatorcontrib><description>The great success of the Internet has promoted the development of digital industries and increased the demand for communication bandwidth. For example, ultrahigh-definition videos and vehicle networks require fast bandwidth speed and increase network connection density, respectively. High-bandwidth and high-density parallel communication drive the rapid development of network virtualization and 5G/6G technology. In a network virtualization environment, this new demand also brings new link resource allocation difficulties in existing substrate networks. To solve this far-reaching problem, this paper proposes a virtual network embedding algorithm via diffusion wavelet (VNE_DW), which is an unsupervised structure learning algorithm. Through the diffusion wavelet, the topology structure of nodes, connection density, and link volume among the nodes are comprehensively evaluated. Nodes that facilitate the link mapping success rate are preferentially selected. Experimental results demonstrate that the mapping success rate and revenue-cost ratio of VNE_DW outperform other state-of-the-art algorithms with high bandwidth and density.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2940971</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bandwidth ; Bandwidths ; connection density ; Density ; Diffusion ; diffusion wavelet ; Embedding ; Heuristic algorithms ; link bandwidth ; Machine learning ; Machine learning algorithms ; Mapping ; Network topology ; Nodes ; Resource allocation ; Substrates ; Success ; Topology ; topology structure ; Virtual network embedding ; Virtual networks ; Virtualization</subject><ispartof>IEEE access, 2019-01, Vol.7, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-127e6730ba40b7817d4b6980ea65909b627ac60202350755b1b11581fd6c25613</citedby><cites>FETCH-LOGICAL-c408t-127e6730ba40b7817d4b6980ea65909b627ac60202350755b1b11581fd6c25613</cites><orcidid>0000-0002-4395-3325 ; 0000-0001-8684-7015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8835914$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhuang, Lei</creatorcontrib><creatorcontrib>Tian, Shuaikui</creatorcontrib><creatorcontrib>He, Mengyang</creatorcontrib><creatorcontrib>Wang, Guoqing</creatorcontrib><creatorcontrib>Liu, Wentan</creatorcontrib><creatorcontrib>Ma, Ling</creatorcontrib><title>Virtual Network Embedding Algorithm via Diffusion Wavelet</title><title>IEEE access</title><addtitle>Access</addtitle><description>The great success of the Internet has promoted the development of digital industries and increased the demand for communication bandwidth. For example, ultrahigh-definition videos and vehicle networks require fast bandwidth speed and increase network connection density, respectively. High-bandwidth and high-density parallel communication drive the rapid development of network virtualization and 5G/6G technology. In a network virtualization environment, this new demand also brings new link resource allocation difficulties in existing substrate networks. To solve this far-reaching problem, this paper proposes a virtual network embedding algorithm via diffusion wavelet (VNE_DW), which is an unsupervised structure learning algorithm. Through the diffusion wavelet, the topology structure of nodes, connection density, and link volume among the nodes are comprehensively evaluated. Nodes that facilitate the link mapping success rate are preferentially selected. Experimental results demonstrate that the mapping success rate and revenue-cost ratio of VNE_DW outperform other state-of-the-art algorithms with high bandwidth and density.</description><subject>Algorithms</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>connection density</subject><subject>Density</subject><subject>Diffusion</subject><subject>diffusion wavelet</subject><subject>Embedding</subject><subject>Heuristic algorithms</subject><subject>link bandwidth</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Mapping</subject><subject>Network topology</subject><subject>Nodes</subject><subject>Resource allocation</subject><subject>Substrates</subject><subject>Success</subject><subject>Topology</subject><subject>topology structure</subject><subject>Virtual network embedding</subject><subject>Virtual networks</subject><subject>Virtualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1PwkAQhhujiUT5BVyaeAZnv3ePBFFJiB7w47jZtlNcLCxuC8Z_b7GEOJeZvJn3ncmTJAMCI0LA3I4nk-liMaJAzIgaDkaRs6RHiTRDJpg8_zdfJv26XkFbupWE6iXmzcdm56r0CZvvED_T6TrDovCbZTquliH65mOd7r1L73xZ7mofNum722OFzXVyUbqqxv6xXyWv99OXyeNw_vwwm4znw5yDboaEKpSKQeY4ZEoTVfBMGg3opDBgMkmVyyVQoEyAEiIjGSFCk7KQORWSsKtk1uUWwa3sNvq1iz82OG__hBCX1sXG5xXajANxqIGhEVyX3KHJuRJOCKdQMdNm3XRZ2xi-dlg3dhV2cdO-bykXQgJTirZbrNvKY6jriOXpKgF7QG475PaA3B6Rt65B5_KIeHJozYQhnP0CZ8d5tg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Zhuang, Lei</creator><creator>Tian, Shuaikui</creator><creator>He, Mengyang</creator><creator>Wang, Guoqing</creator><creator>Liu, Wentan</creator><creator>Ma, Ling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4395-3325</orcidid><orcidid>https://orcid.org/0000-0001-8684-7015</orcidid></search><sort><creationdate>20190101</creationdate><title>Virtual Network Embedding Algorithm via Diffusion Wavelet</title><author>Zhuang, Lei ; Tian, Shuaikui ; He, Mengyang ; Wang, Guoqing ; Liu, Wentan ; Ma, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-127e6730ba40b7817d4b6980ea65909b627ac60202350755b1b11581fd6c25613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>connection density</topic><topic>Density</topic><topic>Diffusion</topic><topic>diffusion wavelet</topic><topic>Embedding</topic><topic>Heuristic algorithms</topic><topic>link bandwidth</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Mapping</topic><topic>Network topology</topic><topic>Nodes</topic><topic>Resource allocation</topic><topic>Substrates</topic><topic>Success</topic><topic>Topology</topic><topic>topology structure</topic><topic>Virtual network embedding</topic><topic>Virtual networks</topic><topic>Virtualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuang, Lei</creatorcontrib><creatorcontrib>Tian, Shuaikui</creatorcontrib><creatorcontrib>He, Mengyang</creatorcontrib><creatorcontrib>Wang, Guoqing</creatorcontrib><creatorcontrib>Liu, Wentan</creatorcontrib><creatorcontrib>Ma, Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuang, Lei</au><au>Tian, Shuaikui</au><au>He, Mengyang</au><au>Wang, Guoqing</au><au>Liu, Wentan</au><au>Ma, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtual Network Embedding Algorithm via Diffusion Wavelet</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>7</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The great success of the Internet has promoted the development of digital industries and increased the demand for communication bandwidth. For example, ultrahigh-definition videos and vehicle networks require fast bandwidth speed and increase network connection density, respectively. High-bandwidth and high-density parallel communication drive the rapid development of network virtualization and 5G/6G technology. In a network virtualization environment, this new demand also brings new link resource allocation difficulties in existing substrate networks. To solve this far-reaching problem, this paper proposes a virtual network embedding algorithm via diffusion wavelet (VNE_DW), which is an unsupervised structure learning algorithm. Through the diffusion wavelet, the topology structure of nodes, connection density, and link volume among the nodes are comprehensively evaluated. Nodes that facilitate the link mapping success rate are preferentially selected. Experimental results demonstrate that the mapping success rate and revenue-cost ratio of VNE_DW outperform other state-of-the-art algorithms with high bandwidth and density.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2940971</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4395-3325</orcidid><orcidid>https://orcid.org/0000-0001-8684-7015</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019-01, Vol.7, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8835914 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Bandwidth Bandwidths connection density Density Diffusion diffusion wavelet Embedding Heuristic algorithms link bandwidth Machine learning Machine learning algorithms Mapping Network topology Nodes Resource allocation Substrates Success Topology topology structure Virtual network embedding Virtual networks Virtualization |
title | Virtual Network Embedding Algorithm via Diffusion Wavelet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T11%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtual%20Network%20Embedding%20Algorithm%20via%20Diffusion%20Wavelet&rft.jtitle=IEEE%20access&rft.au=Zhuang,%20Lei&rft.date=2019-01-01&rft.volume=7&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2940971&rft_dat=%3Cproquest_ieee_%3E2455603772%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455603772&rft_id=info:pmid/&rft_ieee_id=8835914&rft_doaj_id=oai_doaj_org_article_b401ae803e9548f4ae9c475a55a7e739&rfr_iscdi=true |