Virtual Network Embedding Algorithm via Diffusion Wavelet

The great success of the Internet has promoted the development of digital industries and increased the demand for communication bandwidth. For example, ultrahigh-definition videos and vehicle networks require fast bandwidth speed and increase network connection density, respectively. High-bandwidth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019-01, Vol.7, p.1-1
Hauptverfasser: Zhuang, Lei, Tian, Shuaikui, He, Mengyang, Wang, Guoqing, Liu, Wentan, Ma, Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 7
creator Zhuang, Lei
Tian, Shuaikui
He, Mengyang
Wang, Guoqing
Liu, Wentan
Ma, Ling
description The great success of the Internet has promoted the development of digital industries and increased the demand for communication bandwidth. For example, ultrahigh-definition videos and vehicle networks require fast bandwidth speed and increase network connection density, respectively. High-bandwidth and high-density parallel communication drive the rapid development of network virtualization and 5G/6G technology. In a network virtualization environment, this new demand also brings new link resource allocation difficulties in existing substrate networks. To solve this far-reaching problem, this paper proposes a virtual network embedding algorithm via diffusion wavelet (VNE_DW), which is an unsupervised structure learning algorithm. Through the diffusion wavelet, the topology structure of nodes, connection density, and link volume among the nodes are comprehensively evaluated. Nodes that facilitate the link mapping success rate are preferentially selected. Experimental results demonstrate that the mapping success rate and revenue-cost ratio of VNE_DW outperform other state-of-the-art algorithms with high bandwidth and density.
doi_str_mv 10.1109/ACCESS.2019.2940971
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8835914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8835914</ieee_id><doaj_id>oai_doaj_org_article_b401ae803e9548f4ae9c475a55a7e739</doaj_id><sourcerecordid>2455603772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-127e6730ba40b7817d4b6980ea65909b627ac60202350755b1b11581fd6c25613</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhhujiUT5BVyaeAZnv3ePBFFJiB7w47jZtlNcLCxuC8Z_b7GEOJeZvJn3ncmTJAMCI0LA3I4nk-liMaJAzIgaDkaRs6RHiTRDJpg8_zdfJv26XkFbupWE6iXmzcdm56r0CZvvED_T6TrDovCbZTquliH65mOd7r1L73xZ7mofNum722OFzXVyUbqqxv6xXyWv99OXyeNw_vwwm4znw5yDboaEKpSKQeY4ZEoTVfBMGg3opDBgMkmVyyVQoEyAEiIjGSFCk7KQORWSsKtk1uUWwa3sNvq1iz82OG__hBCX1sXG5xXajANxqIGhEVyX3KHJuRJOCKdQMdNm3XRZ2xi-dlg3dhV2cdO-bykXQgJTirZbrNvKY6jriOXpKgF7QG475PaA3B6Rt65B5_KIeHJozYQhnP0CZ8d5tg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455603772</pqid></control><display><type>article</type><title>Virtual Network Embedding Algorithm via Diffusion Wavelet</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhuang, Lei ; Tian, Shuaikui ; He, Mengyang ; Wang, Guoqing ; Liu, Wentan ; Ma, Ling</creator><creatorcontrib>Zhuang, Lei ; Tian, Shuaikui ; He, Mengyang ; Wang, Guoqing ; Liu, Wentan ; Ma, Ling</creatorcontrib><description>The great success of the Internet has promoted the development of digital industries and increased the demand for communication bandwidth. For example, ultrahigh-definition videos and vehicle networks require fast bandwidth speed and increase network connection density, respectively. High-bandwidth and high-density parallel communication drive the rapid development of network virtualization and 5G/6G technology. In a network virtualization environment, this new demand also brings new link resource allocation difficulties in existing substrate networks. To solve this far-reaching problem, this paper proposes a virtual network embedding algorithm via diffusion wavelet (VNE_DW), which is an unsupervised structure learning algorithm. Through the diffusion wavelet, the topology structure of nodes, connection density, and link volume among the nodes are comprehensively evaluated. Nodes that facilitate the link mapping success rate are preferentially selected. Experimental results demonstrate that the mapping success rate and revenue-cost ratio of VNE_DW outperform other state-of-the-art algorithms with high bandwidth and density.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2940971</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bandwidth ; Bandwidths ; connection density ; Density ; Diffusion ; diffusion wavelet ; Embedding ; Heuristic algorithms ; link bandwidth ; Machine learning ; Machine learning algorithms ; Mapping ; Network topology ; Nodes ; Resource allocation ; Substrates ; Success ; Topology ; topology structure ; Virtual network embedding ; Virtual networks ; Virtualization</subject><ispartof>IEEE access, 2019-01, Vol.7, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-127e6730ba40b7817d4b6980ea65909b627ac60202350755b1b11581fd6c25613</citedby><cites>FETCH-LOGICAL-c408t-127e6730ba40b7817d4b6980ea65909b627ac60202350755b1b11581fd6c25613</cites><orcidid>0000-0002-4395-3325 ; 0000-0001-8684-7015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8835914$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhuang, Lei</creatorcontrib><creatorcontrib>Tian, Shuaikui</creatorcontrib><creatorcontrib>He, Mengyang</creatorcontrib><creatorcontrib>Wang, Guoqing</creatorcontrib><creatorcontrib>Liu, Wentan</creatorcontrib><creatorcontrib>Ma, Ling</creatorcontrib><title>Virtual Network Embedding Algorithm via Diffusion Wavelet</title><title>IEEE access</title><addtitle>Access</addtitle><description>The great success of the Internet has promoted the development of digital industries and increased the demand for communication bandwidth. For example, ultrahigh-definition videos and vehicle networks require fast bandwidth speed and increase network connection density, respectively. High-bandwidth and high-density parallel communication drive the rapid development of network virtualization and 5G/6G technology. In a network virtualization environment, this new demand also brings new link resource allocation difficulties in existing substrate networks. To solve this far-reaching problem, this paper proposes a virtual network embedding algorithm via diffusion wavelet (VNE_DW), which is an unsupervised structure learning algorithm. Through the diffusion wavelet, the topology structure of nodes, connection density, and link volume among the nodes are comprehensively evaluated. Nodes that facilitate the link mapping success rate are preferentially selected. Experimental results demonstrate that the mapping success rate and revenue-cost ratio of VNE_DW outperform other state-of-the-art algorithms with high bandwidth and density.</description><subject>Algorithms</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>connection density</subject><subject>Density</subject><subject>Diffusion</subject><subject>diffusion wavelet</subject><subject>Embedding</subject><subject>Heuristic algorithms</subject><subject>link bandwidth</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Mapping</subject><subject>Network topology</subject><subject>Nodes</subject><subject>Resource allocation</subject><subject>Substrates</subject><subject>Success</subject><subject>Topology</subject><subject>topology structure</subject><subject>Virtual network embedding</subject><subject>Virtual networks</subject><subject>Virtualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1PwkAQhhujiUT5BVyaeAZnv3ePBFFJiB7w47jZtlNcLCxuC8Z_b7GEOJeZvJn3ncmTJAMCI0LA3I4nk-liMaJAzIgaDkaRs6RHiTRDJpg8_zdfJv26XkFbupWE6iXmzcdm56r0CZvvED_T6TrDovCbZTquliH65mOd7r1L73xZ7mofNum722OFzXVyUbqqxv6xXyWv99OXyeNw_vwwm4znw5yDboaEKpSKQeY4ZEoTVfBMGg3opDBgMkmVyyVQoEyAEiIjGSFCk7KQORWSsKtk1uUWwa3sNvq1iz82OG__hBCX1sXG5xXajANxqIGhEVyX3KHJuRJOCKdQMdNm3XRZ2xi-dlg3dhV2cdO-bykXQgJTirZbrNvKY6jriOXpKgF7QG475PaA3B6Rt65B5_KIeHJozYQhnP0CZ8d5tg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Zhuang, Lei</creator><creator>Tian, Shuaikui</creator><creator>He, Mengyang</creator><creator>Wang, Guoqing</creator><creator>Liu, Wentan</creator><creator>Ma, Ling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4395-3325</orcidid><orcidid>https://orcid.org/0000-0001-8684-7015</orcidid></search><sort><creationdate>20190101</creationdate><title>Virtual Network Embedding Algorithm via Diffusion Wavelet</title><author>Zhuang, Lei ; Tian, Shuaikui ; He, Mengyang ; Wang, Guoqing ; Liu, Wentan ; Ma, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-127e6730ba40b7817d4b6980ea65909b627ac60202350755b1b11581fd6c25613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>connection density</topic><topic>Density</topic><topic>Diffusion</topic><topic>diffusion wavelet</topic><topic>Embedding</topic><topic>Heuristic algorithms</topic><topic>link bandwidth</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Mapping</topic><topic>Network topology</topic><topic>Nodes</topic><topic>Resource allocation</topic><topic>Substrates</topic><topic>Success</topic><topic>Topology</topic><topic>topology structure</topic><topic>Virtual network embedding</topic><topic>Virtual networks</topic><topic>Virtualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuang, Lei</creatorcontrib><creatorcontrib>Tian, Shuaikui</creatorcontrib><creatorcontrib>He, Mengyang</creatorcontrib><creatorcontrib>Wang, Guoqing</creatorcontrib><creatorcontrib>Liu, Wentan</creatorcontrib><creatorcontrib>Ma, Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuang, Lei</au><au>Tian, Shuaikui</au><au>He, Mengyang</au><au>Wang, Guoqing</au><au>Liu, Wentan</au><au>Ma, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtual Network Embedding Algorithm via Diffusion Wavelet</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>7</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The great success of the Internet has promoted the development of digital industries and increased the demand for communication bandwidth. For example, ultrahigh-definition videos and vehicle networks require fast bandwidth speed and increase network connection density, respectively. High-bandwidth and high-density parallel communication drive the rapid development of network virtualization and 5G/6G technology. In a network virtualization environment, this new demand also brings new link resource allocation difficulties in existing substrate networks. To solve this far-reaching problem, this paper proposes a virtual network embedding algorithm via diffusion wavelet (VNE_DW), which is an unsupervised structure learning algorithm. Through the diffusion wavelet, the topology structure of nodes, connection density, and link volume among the nodes are comprehensively evaluated. Nodes that facilitate the link mapping success rate are preferentially selected. Experimental results demonstrate that the mapping success rate and revenue-cost ratio of VNE_DW outperform other state-of-the-art algorithms with high bandwidth and density.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2940971</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4395-3325</orcidid><orcidid>https://orcid.org/0000-0001-8684-7015</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019-01, Vol.7, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8835914
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Bandwidth
Bandwidths
connection density
Density
Diffusion
diffusion wavelet
Embedding
Heuristic algorithms
link bandwidth
Machine learning
Machine learning algorithms
Mapping
Network topology
Nodes
Resource allocation
Substrates
Success
Topology
topology structure
Virtual network embedding
Virtual networks
Virtualization
title Virtual Network Embedding Algorithm via Diffusion Wavelet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T11%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtual%20Network%20Embedding%20Algorithm%20via%20Diffusion%20Wavelet&rft.jtitle=IEEE%20access&rft.au=Zhuang,%20Lei&rft.date=2019-01-01&rft.volume=7&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2940971&rft_dat=%3Cproquest_ieee_%3E2455603772%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455603772&rft_id=info:pmid/&rft_ieee_id=8835914&rft_doaj_id=oai_doaj_org_article_b401ae803e9548f4ae9c475a55a7e739&rfr_iscdi=true