Exploiting Unintended Feature Leakage in Collaborative Learning
Collaborative machine learning and related techniques such as federated learning allow multiple participants, each with his own training dataset, to build a joint model by training locally and periodically exchanging model updates. We demonstrate that these updates leak unintended information about...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 706 |
---|---|
container_issue | |
container_start_page | 691 |
container_title | |
container_volume | |
creator | Melis, Luca Song, Congzheng De Cristofaro, Emiliano Shmatikov, Vitaly |
description | Collaborative machine learning and related techniques such as federated learning allow multiple participants, each with his own training dataset, to build a joint model by training locally and periodically exchanging model updates. We demonstrate that these updates leak unintended information about participants' training data and develop passive and active inference attacks to exploit this leakage. First, we show that an adversarial participant can infer the presence of exact data points -- for example, specific locations -- in others' training data (i.e., membership inference). Then, we show how this adversary can infer properties that hold only for a subset of the training data and are independent of the properties that the joint model aims to capture. For example, he can infer when a specific person first appears in the photos used to train a binary gender classifier. We evaluate our attacks on a variety of tasks, datasets, and learning configurations, analyze their limitations, and discuss possible defenses. |
doi_str_mv | 10.1109/SP.2019.00029 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_8835269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8835269</ieee_id><sourcerecordid>8835269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-3c4ee1c5f7fb1c8f3019aa3b1132a4da4393c29af0e8b86054e7ee679f21c4453</originalsourceid><addsrcrecordid>eNotjsFKxDAURaMgOI6zdOWmP9Ca5CVNshIpM6NQmAGd9fCavpRobYe2iv69Rb2bs7iHy2XsRvBMCO7unveZ5MJlnHPpztjKGSs02HwOd-dsIcHoVEhuLtnVOL7OFgenFux-_XVq-zjFrkkOXewm6mqqkw3h9DFQUhK-YUNJ7JKib1us-gGn-PlbDLPeXLOLgO1Iq38u2WGzfike03K3fSoeytSDVFMKXhEJr4MJlfA2wPwVESohQKKqUYEDLx0GTrayOdeKDFFuXJDCK6VhyW7_diMRHU9DfMfh-2gtaJk7-AGq0EhY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Exploiting Unintended Feature Leakage in Collaborative Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Melis, Luca ; Song, Congzheng ; De Cristofaro, Emiliano ; Shmatikov, Vitaly</creator><creatorcontrib>Melis, Luca ; Song, Congzheng ; De Cristofaro, Emiliano ; Shmatikov, Vitaly</creatorcontrib><description>Collaborative machine learning and related techniques such as federated learning allow multiple participants, each with his own training dataset, to build a joint model by training locally and periodically exchanging model updates. We demonstrate that these updates leak unintended information about participants' training data and develop passive and active inference attacks to exploit this leakage. First, we show that an adversarial participant can infer the presence of exact data points -- for example, specific locations -- in others' training data (i.e., membership inference). Then, we show how this adversary can infer properties that hold only for a subset of the training data and are independent of the properties that the joint model aims to capture. For example, he can infer when a specific person first appears in the photos used to train a binary gender classifier. We evaluate our attacks on a variety of tasks, datasets, and learning configurations, analyze their limitations, and discuss possible defenses.</description><identifier>EISSN: 2375-1207</identifier><identifier>EISBN: 9781538666609</identifier><identifier>EISBN: 153866660X</identifier><identifier>DOI: 10.1109/SP.2019.00029</identifier><language>eng</language><publisher>IEEE</publisher><subject>Collaborative work ; collaborative-learning ; Computational modeling ; Data models ; deep-learning ; inference-attacks ; privacy ; security ; Servers ; Task analysis ; Training ; Training data</subject><ispartof>2019 IEEE Symposium on Security and Privacy (SP), 2019, p.691-706</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-3c4ee1c5f7fb1c8f3019aa3b1132a4da4393c29af0e8b86054e7ee679f21c4453</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8835269$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,792,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8835269$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Melis, Luca</creatorcontrib><creatorcontrib>Song, Congzheng</creatorcontrib><creatorcontrib>De Cristofaro, Emiliano</creatorcontrib><creatorcontrib>Shmatikov, Vitaly</creatorcontrib><title>Exploiting Unintended Feature Leakage in Collaborative Learning</title><title>2019 IEEE Symposium on Security and Privacy (SP)</title><addtitle>SP</addtitle><description>Collaborative machine learning and related techniques such as federated learning allow multiple participants, each with his own training dataset, to build a joint model by training locally and periodically exchanging model updates. We demonstrate that these updates leak unintended information about participants' training data and develop passive and active inference attacks to exploit this leakage. First, we show that an adversarial participant can infer the presence of exact data points -- for example, specific locations -- in others' training data (i.e., membership inference). Then, we show how this adversary can infer properties that hold only for a subset of the training data and are independent of the properties that the joint model aims to capture. For example, he can infer when a specific person first appears in the photos used to train a binary gender classifier. We evaluate our attacks on a variety of tasks, datasets, and learning configurations, analyze their limitations, and discuss possible defenses.</description><subject>Collaborative work</subject><subject>collaborative-learning</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>deep-learning</subject><subject>inference-attacks</subject><subject>privacy</subject><subject>security</subject><subject>Servers</subject><subject>Task analysis</subject><subject>Training</subject><subject>Training data</subject><issn>2375-1207</issn><isbn>9781538666609</isbn><isbn>153866660X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjsFKxDAURaMgOI6zdOWmP9Ca5CVNshIpM6NQmAGd9fCavpRobYe2iv69Rb2bs7iHy2XsRvBMCO7unveZ5MJlnHPpztjKGSs02HwOd-dsIcHoVEhuLtnVOL7OFgenFux-_XVq-zjFrkkOXewm6mqqkw3h9DFQUhK-YUNJ7JKib1us-gGn-PlbDLPeXLOLgO1Iq38u2WGzfike03K3fSoeytSDVFMKXhEJr4MJlfA2wPwVESohQKKqUYEDLx0GTrayOdeKDFFuXJDCK6VhyW7_diMRHU9DfMfh-2gtaJk7-AGq0EhY</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Melis, Luca</creator><creator>Song, Congzheng</creator><creator>De Cristofaro, Emiliano</creator><creator>Shmatikov, Vitaly</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20190501</creationdate><title>Exploiting Unintended Feature Leakage in Collaborative Learning</title><author>Melis, Luca ; Song, Congzheng ; De Cristofaro, Emiliano ; Shmatikov, Vitaly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-3c4ee1c5f7fb1c8f3019aa3b1132a4da4393c29af0e8b86054e7ee679f21c4453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Collaborative work</topic><topic>collaborative-learning</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>deep-learning</topic><topic>inference-attacks</topic><topic>privacy</topic><topic>security</topic><topic>Servers</topic><topic>Task analysis</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Melis, Luca</creatorcontrib><creatorcontrib>Song, Congzheng</creatorcontrib><creatorcontrib>De Cristofaro, Emiliano</creatorcontrib><creatorcontrib>Shmatikov, Vitaly</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Melis, Luca</au><au>Song, Congzheng</au><au>De Cristofaro, Emiliano</au><au>Shmatikov, Vitaly</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exploiting Unintended Feature Leakage in Collaborative Learning</atitle><btitle>2019 IEEE Symposium on Security and Privacy (SP)</btitle><stitle>SP</stitle><date>2019-05-01</date><risdate>2019</risdate><spage>691</spage><epage>706</epage><pages>691-706</pages><eissn>2375-1207</eissn><eisbn>9781538666609</eisbn><eisbn>153866660X</eisbn><abstract>Collaborative machine learning and related techniques such as federated learning allow multiple participants, each with his own training dataset, to build a joint model by training locally and periodically exchanging model updates. We demonstrate that these updates leak unintended information about participants' training data and develop passive and active inference attacks to exploit this leakage. First, we show that an adversarial participant can infer the presence of exact data points -- for example, specific locations -- in others' training data (i.e., membership inference). Then, we show how this adversary can infer properties that hold only for a subset of the training data and are independent of the properties that the joint model aims to capture. For example, he can infer when a specific person first appears in the photos used to train a binary gender classifier. We evaluate our attacks on a variety of tasks, datasets, and learning configurations, analyze their limitations, and discuss possible defenses.</abstract><pub>IEEE</pub><doi>10.1109/SP.2019.00029</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2375-1207 |
ispartof | 2019 IEEE Symposium on Security and Privacy (SP), 2019, p.691-706 |
issn | 2375-1207 |
language | eng |
recordid | cdi_ieee_primary_8835269 |
source | IEEE Electronic Library (IEL) |
subjects | Collaborative work collaborative-learning Computational modeling Data models deep-learning inference-attacks privacy security Servers Task analysis Training Training data |
title | Exploiting Unintended Feature Leakage in Collaborative Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exploiting%20Unintended%20Feature%20Leakage%20in%20Collaborative%20Learning&rft.btitle=2019%20IEEE%20Symposium%20on%20Security%20and%20Privacy%20(SP)&rft.au=Melis,%20Luca&rft.date=2019-05-01&rft.spage=691&rft.epage=706&rft.pages=691-706&rft.eissn=2375-1207&rft_id=info:doi/10.1109/SP.2019.00029&rft_dat=%3Cieee_RIE%3E8835269%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781538666609&rft.eisbn_list=153866660X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8835269&rfr_iscdi=true |