Optimal Streaming Erasure Codes Over the Three-Node Relay Network

This paper investigates low-latency streaming codes for a three-node relay network. The source transmits a sequence of messages (streaming messages) to the destination through the relay between them, where the first-hop channel from the source to the relay and the second-hop channel from the relay t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2020-05, Vol.66 (5), p.2696-2712
Hauptverfasser: Fong, Silas L., Khisti, Ashish, Li, Baochun, Tan, Wai-Tian, Zhu, Xiaoqing, Apostolopoulos, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2712
container_issue 5
container_start_page 2696
container_title IEEE transactions on information theory
container_volume 66
creator Fong, Silas L.
Khisti, Ashish
Li, Baochun
Tan, Wai-Tian
Zhu, Xiaoqing
Apostolopoulos, John
description This paper investigates low-latency streaming codes for a three-node relay network. The source transmits a sequence of messages (streaming messages) to the destination through the relay between them, where the first-hop channel from the source to the relay and the second-hop channel from the relay to the destination are subject to packet erasures. Every source message generated at a time slot must be recovered perfectly at the destination within the subsequent T time slots. In any sliding window of {T}+1 time slots, we assume no more than {N}_{1} and {N}_{2} erasures are introduced by the first-hop channel and second-hop channel respectively. We fully characterize the maximum achievable rate in terms of T , {N}_{1} and {N}_{2} . The achievability is proved by using a symbol-wise decode-forward strategy where the source symbols within the same message are decoded by the relay with different delays. The converse is proved by analyzing the maximum achievable rate for each channel when the erasures in the other channel are consecutive (bursty). In addition, we show that traditional message-wise decode-forward strategies, which require the source symbols within the same message to be decoded by the relay with the same delay, are sub-optimal in general.
doi_str_mv 10.1109/TIT.2019.2940833
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8835153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8835153</ieee_id><sourcerecordid>2393785199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-64f6b4f18dcd9a46151de789c23a6543ea27db3ce196622c142f0ca13ca606bf3</originalsourceid><addsrcrecordid>eNqNkMtLAzEQh4MoWB93wcuCR9mayWuTY1l8QbGg9byk2Vm7td2tSar0vzfSoldPkwnfl5n8CLkAOgSg5mb6OB0yCmbIjKCa8wMyACmL3CgpDsmAUtC5EUIfk5MQFqkVEtiAjCbr2K7sMnuJHu2q7d6yW2_DxmNW9jWGbPKJPotzzKZzj5g_pcvsGZd2mz1h_Or9-xk5auwy4Pm-npLXu9tp-ZCPJ_eP5WicO2Yg5ko0aiYa0LWrjRUKJNRYaOMYt2lFjpYV9Yw7BKMUYw4Ea6izwJ1VVM0afkqudu-uff-xwRCrRb_xXRpZMW54oSUYkyi6o5zvQ_DYVGuf_ue3FdDqJ6gqBVX9BFXtg0qK3ilfOOub4FrsHP5qlFLJKVPapBMtyjba2PZd2W-6mNTr_6uJvtzRLeIfpTWXIDn_Bm_Eg44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393785199</pqid></control><display><type>article</type><title>Optimal Streaming Erasure Codes Over the Three-Node Relay Network</title><source>IEEE Electronic Library (IEL)</source><creator>Fong, Silas L. ; Khisti, Ashish ; Li, Baochun ; Tan, Wai-Tian ; Zhu, Xiaoqing ; Apostolopoulos, John</creator><creatorcontrib>Fong, Silas L. ; Khisti, Ashish ; Li, Baochun ; Tan, Wai-Tian ; Zhu, Xiaoqing ; Apostolopoulos, John</creatorcontrib><description><![CDATA[This paper investigates low-latency streaming codes for a three-node relay network. The source transmits a sequence of messages (streaming messages) to the destination through the relay between them, where the first-hop channel from the source to the relay and the second-hop channel from the relay to the destination are subject to packet erasures. Every source message generated at a time slot must be recovered perfectly at the destination within the subsequent T time slots. In any sliding window of <inline-formula> <tex-math notation="LaTeX"> {T}+1 </tex-math></inline-formula> time slots, we assume no more than <inline-formula> <tex-math notation="LaTeX"> {N}_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{N}_{2} </tex-math></inline-formula> erasures are introduced by the first-hop channel and second-hop channel respectively. We fully characterize the maximum achievable rate in terms of T , <inline-formula> <tex-math notation="LaTeX"> {N}_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX"> {N}_{2} </tex-math></inline-formula>. The achievability is proved by using a symbol-wise decode-forward strategy where the source symbols within the same message are decoded by the relay with different delays. The converse is proved by analyzing the maximum achievable rate for each channel when the erasures in the other channel are consecutive (bursty). In addition, we show that traditional message-wise decode-forward strategies, which require the source symbols within the same message to be decoded by the relay with the same delay, are sub-optimal in general.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2019.2940833</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Cloud computing ; Computer Science ; Computer Science, Information Systems ; Data centers ; Delays ; Encoding ; Engineering ; Engineering, Electrical &amp; Electronic ; Forward error correction ; maximum achievable rate ; message-wise decode-forward ; Messages ; packet erasures ; Relay ; Relay networks (telecommunications) ; Science &amp; Technology ; Service introduction ; streaming ; Streaming media ; symbol-wise decode-forward ; Symbols ; Technology ; three-node relay network</subject><ispartof>IEEE transactions on information theory, 2020-05, Vol.66 (5), p.2696-2712</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000530268900007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c291t-64f6b4f18dcd9a46151de789c23a6543ea27db3ce196622c142f0ca13ca606bf3</citedby><cites>FETCH-LOGICAL-c291t-64f6b4f18dcd9a46151de789c23a6543ea27db3ce196622c142f0ca13ca606bf3</cites><orcidid>0000-0003-2404-0974 ; 0000-0002-8762-5294 ; 0000-0002-2331-8965 ; 0000-0001-9413-7240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8835153$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,28253,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8835153$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fong, Silas L.</creatorcontrib><creatorcontrib>Khisti, Ashish</creatorcontrib><creatorcontrib>Li, Baochun</creatorcontrib><creatorcontrib>Tan, Wai-Tian</creatorcontrib><creatorcontrib>Zhu, Xiaoqing</creatorcontrib><creatorcontrib>Apostolopoulos, John</creatorcontrib><title>Optimal Streaming Erasure Codes Over the Three-Node Relay Network</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><addtitle>IEEE T INFORM THEORY</addtitle><description><![CDATA[This paper investigates low-latency streaming codes for a three-node relay network. The source transmits a sequence of messages (streaming messages) to the destination through the relay between them, where the first-hop channel from the source to the relay and the second-hop channel from the relay to the destination are subject to packet erasures. Every source message generated at a time slot must be recovered perfectly at the destination within the subsequent T time slots. In any sliding window of <inline-formula> <tex-math notation="LaTeX"> {T}+1 </tex-math></inline-formula> time slots, we assume no more than <inline-formula> <tex-math notation="LaTeX"> {N}_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{N}_{2} </tex-math></inline-formula> erasures are introduced by the first-hop channel and second-hop channel respectively. We fully characterize the maximum achievable rate in terms of T , <inline-formula> <tex-math notation="LaTeX"> {N}_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX"> {N}_{2} </tex-math></inline-formula>. The achievability is proved by using a symbol-wise decode-forward strategy where the source symbols within the same message are decoded by the relay with different delays. The converse is proved by analyzing the maximum achievable rate for each channel when the erasures in the other channel are consecutive (bursty). In addition, we show that traditional message-wise decode-forward strategies, which require the source symbols within the same message to be decoded by the relay with the same delay, are sub-optimal in general.]]></description><subject>Cloud computing</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Data centers</subject><subject>Delays</subject><subject>Encoding</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Forward error correction</subject><subject>maximum achievable rate</subject><subject>message-wise decode-forward</subject><subject>Messages</subject><subject>packet erasures</subject><subject>Relay</subject><subject>Relay networks (telecommunications)</subject><subject>Science &amp; Technology</subject><subject>Service introduction</subject><subject>streaming</subject><subject>Streaming media</subject><subject>symbol-wise decode-forward</subject><subject>Symbols</subject><subject>Technology</subject><subject>three-node relay network</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkMtLAzEQh4MoWB93wcuCR9mayWuTY1l8QbGg9byk2Vm7td2tSar0vzfSoldPkwnfl5n8CLkAOgSg5mb6OB0yCmbIjKCa8wMyACmL3CgpDsmAUtC5EUIfk5MQFqkVEtiAjCbr2K7sMnuJHu2q7d6yW2_DxmNW9jWGbPKJPotzzKZzj5g_pcvsGZd2mz1h_Or9-xk5auwy4Pm-npLXu9tp-ZCPJ_eP5WicO2Yg5ko0aiYa0LWrjRUKJNRYaOMYt2lFjpYV9Yw7BKMUYw4Ea6izwJ1VVM0afkqudu-uff-xwRCrRb_xXRpZMW54oSUYkyi6o5zvQ_DYVGuf_ue3FdDqJ6gqBVX9BFXtg0qK3ilfOOub4FrsHP5qlFLJKVPapBMtyjba2PZd2W-6mNTr_6uJvtzRLeIfpTWXIDn_Bm_Eg44</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Fong, Silas L.</creator><creator>Khisti, Ashish</creator><creator>Li, Baochun</creator><creator>Tan, Wai-Tian</creator><creator>Zhu, Xiaoqing</creator><creator>Apostolopoulos, John</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2404-0974</orcidid><orcidid>https://orcid.org/0000-0002-8762-5294</orcidid><orcidid>https://orcid.org/0000-0002-2331-8965</orcidid><orcidid>https://orcid.org/0000-0001-9413-7240</orcidid></search><sort><creationdate>20200501</creationdate><title>Optimal Streaming Erasure Codes Over the Three-Node Relay Network</title><author>Fong, Silas L. ; Khisti, Ashish ; Li, Baochun ; Tan, Wai-Tian ; Zhu, Xiaoqing ; Apostolopoulos, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-64f6b4f18dcd9a46151de789c23a6543ea27db3ce196622c142f0ca13ca606bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cloud computing</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Data centers</topic><topic>Delays</topic><topic>Encoding</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Forward error correction</topic><topic>maximum achievable rate</topic><topic>message-wise decode-forward</topic><topic>Messages</topic><topic>packet erasures</topic><topic>Relay</topic><topic>Relay networks (telecommunications)</topic><topic>Science &amp; Technology</topic><topic>Service introduction</topic><topic>streaming</topic><topic>Streaming media</topic><topic>symbol-wise decode-forward</topic><topic>Symbols</topic><topic>Technology</topic><topic>three-node relay network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fong, Silas L.</creatorcontrib><creatorcontrib>Khisti, Ashish</creatorcontrib><creatorcontrib>Li, Baochun</creatorcontrib><creatorcontrib>Tan, Wai-Tian</creatorcontrib><creatorcontrib>Zhu, Xiaoqing</creatorcontrib><creatorcontrib>Apostolopoulos, John</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fong, Silas L.</au><au>Khisti, Ashish</au><au>Li, Baochun</au><au>Tan, Wai-Tian</au><au>Zhu, Xiaoqing</au><au>Apostolopoulos, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Streaming Erasure Codes Over the Three-Node Relay Network</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><stitle>IEEE T INFORM THEORY</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>66</volume><issue>5</issue><spage>2696</spage><epage>2712</epage><pages>2696-2712</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[This paper investigates low-latency streaming codes for a three-node relay network. The source transmits a sequence of messages (streaming messages) to the destination through the relay between them, where the first-hop channel from the source to the relay and the second-hop channel from the relay to the destination are subject to packet erasures. Every source message generated at a time slot must be recovered perfectly at the destination within the subsequent T time slots. In any sliding window of <inline-formula> <tex-math notation="LaTeX"> {T}+1 </tex-math></inline-formula> time slots, we assume no more than <inline-formula> <tex-math notation="LaTeX"> {N}_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{N}_{2} </tex-math></inline-formula> erasures are introduced by the first-hop channel and second-hop channel respectively. We fully characterize the maximum achievable rate in terms of T , <inline-formula> <tex-math notation="LaTeX"> {N}_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX"> {N}_{2} </tex-math></inline-formula>. The achievability is proved by using a symbol-wise decode-forward strategy where the source symbols within the same message are decoded by the relay with different delays. The converse is proved by analyzing the maximum achievable rate for each channel when the erasures in the other channel are consecutive (bursty). In addition, we show that traditional message-wise decode-forward strategies, which require the source symbols within the same message to be decoded by the relay with the same delay, are sub-optimal in general.]]></abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TIT.2019.2940833</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2404-0974</orcidid><orcidid>https://orcid.org/0000-0002-8762-5294</orcidid><orcidid>https://orcid.org/0000-0002-2331-8965</orcidid><orcidid>https://orcid.org/0000-0001-9413-7240</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2020-05, Vol.66 (5), p.2696-2712
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_8835153
source IEEE Electronic Library (IEL)
subjects Cloud computing
Computer Science
Computer Science, Information Systems
Data centers
Delays
Encoding
Engineering
Engineering, Electrical & Electronic
Forward error correction
maximum achievable rate
message-wise decode-forward
Messages
packet erasures
Relay
Relay networks (telecommunications)
Science & Technology
Service introduction
streaming
Streaming media
symbol-wise decode-forward
Symbols
Technology
three-node relay network
title Optimal Streaming Erasure Codes Over the Three-Node Relay Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T19%3A25%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Streaming%20Erasure%20Codes%20Over%20the%20Three-Node%20Relay%20Network&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Fong,%20Silas%20L.&rft.date=2020-05-01&rft.volume=66&rft.issue=5&rft.spage=2696&rft.epage=2712&rft.pages=2696-2712&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2019.2940833&rft_dat=%3Cproquest_RIE%3E2393785199%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393785199&rft_id=info:pmid/&rft_ieee_id=8835153&rfr_iscdi=true