UTSP: User-Based Two-Step Recommendation With Popularity Normalization Towards Diversity and Novelty
Information technologies such as e-commerce and e-news bring overloaded information as well as convenience to users, cooperatives and companies. Recommender system is a significant technology in solving this information overload problem. Due to the outstanding accuracy performance in top- N recomme...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.145426-145434 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 145434 |
---|---|
container_issue | |
container_start_page | 145426 |
container_title | IEEE access |
container_volume | 7 |
creator | Niu, Ke Zhao, Xiangyu Li, Fangfang Li, Ning Peng, Xueping Chen, Wei |
description | Information technologies such as e-commerce and e-news bring overloaded information as well as convenience to users, cooperatives and companies. Recommender system is a significant technology in solving this information overload problem. Due to the outstanding accuracy performance in top- N recommendation tasks, two-step recommendation algorithms are suitable to generate recommendations. However, their recommendation lists are biased towards popular items. In this paper, we propose a user based two-step recommendation algorithm with popularity normalization to improve recommendation diversity and novelty, as well as two evaluation metrics to measure diverse and novel performance. Experimental results demonstrate that our proposed approach significantly improves the diversity and novelty performance while still inheriting the advantage of two-step recommendation approaches on accuracy metrics. |
doi_str_mv | 10.1109/ACCESS.2019.2939945 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8826263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8826263</ieee_id><doaj_id>oai_doaj_org_article_7c79519eeae94232bcff4a3168fe0d62</doaj_id><sourcerecordid>2455611481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8748f4fdeb0451f61ed6efd559b31eed1029b460d0cebd14dfa04c03237cfd833</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoLCW5-gS8LPa-r75V6c918GEJjapschVYatTJry5XWNs6v77obQuYyw5v33gy8ohhjNMEYqa_T2ex2uZwQhNWEKKoU4x-Ka4KFqiin4uO7-aq4yXmD-pI9xOvrwq1Xy8W3cp0hVd9NBleuTrFadrAvf4GN2y3snOlC3JXPoftTLuL-0JoUunP5M6atacPLsF3Fk0kulz_CEVK-7M3O9ZwjtN35c_HJmzbDzWsfFeu729XsoXp8up_Ppo-VZUh2layZ9Mw7aBDj2AsMToB3nKuGYgCHEVENE8ghC43DzHmDmEWU0Np6JykdFfPB10Wz0fsUtiaddTRB_wdi-q1N6oJtQde2VhwrAAOKEUoa6z0zFAvpATlBeq8vg9c-xb8HyJ3exEPa9e9rwjgXGDOJexYdWDbFnBP4t6sY6Us6ekhHX9LRr-n0qvGgCgDwppCSCCIo_Qd4fIxN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455611481</pqid></control><display><type>article</type><title>UTSP: User-Based Two-Step Recommendation With Popularity Normalization Towards Diversity and Novelty</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek</source><source>IEEE Xplore Open Access Journals</source><creator>Niu, Ke ; Zhao, Xiangyu ; Li, Fangfang ; Li, Ning ; Peng, Xueping ; Chen, Wei</creator><creatorcontrib>Niu, Ke ; Zhao, Xiangyu ; Li, Fangfang ; Li, Ning ; Peng, Xueping ; Chen, Wei</creatorcontrib><description>Information technologies such as e-commerce and e-news bring overloaded information as well as convenience to users, cooperatives and companies. Recommender system is a significant technology in solving this information overload problem. Due to the outstanding accuracy performance in top-<inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> recommendation tasks, two-step recommendation algorithms are suitable to generate recommendations. However, their recommendation lists are biased towards popular items. In this paper, we propose a user based two-step recommendation algorithm with popularity normalization to improve recommendation diversity and novelty, as well as two evaluation metrics to measure diverse and novel performance. Experimental results demonstrate that our proposed approach significantly improves the diversity and novelty performance while still inheriting the advantage of two-step recommendation approaches on accuracy metrics.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2939945</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aggregates ; Agriculture ; Algorithms ; collaborative filtering ; Information technology ; Measurement ; Overloading ; popularity normalization ; Prediction algorithms ; Predictive models ; Recommender systems ; Top-N recommendation ; two-step recommendation algorithm</subject><ispartof>IEEE access, 2019, Vol.7, p.145426-145434</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8748f4fdeb0451f61ed6efd559b31eed1029b460d0cebd14dfa04c03237cfd833</citedby><cites>FETCH-LOGICAL-c408t-8748f4fdeb0451f61ed6efd559b31eed1029b460d0cebd14dfa04c03237cfd833</cites><orcidid>0000-0003-1004-3613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8826263$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Niu, Ke</creatorcontrib><creatorcontrib>Zhao, Xiangyu</creatorcontrib><creatorcontrib>Li, Fangfang</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Peng, Xueping</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><title>UTSP: User-Based Two-Step Recommendation With Popularity Normalization Towards Diversity and Novelty</title><title>IEEE access</title><addtitle>Access</addtitle><description>Information technologies such as e-commerce and e-news bring overloaded information as well as convenience to users, cooperatives and companies. Recommender system is a significant technology in solving this information overload problem. Due to the outstanding accuracy performance in top-<inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> recommendation tasks, two-step recommendation algorithms are suitable to generate recommendations. However, their recommendation lists are biased towards popular items. In this paper, we propose a user based two-step recommendation algorithm with popularity normalization to improve recommendation diversity and novelty, as well as two evaluation metrics to measure diverse and novel performance. Experimental results demonstrate that our proposed approach significantly improves the diversity and novelty performance while still inheriting the advantage of two-step recommendation approaches on accuracy metrics.</description><subject>Aggregates</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>collaborative filtering</subject><subject>Information technology</subject><subject>Measurement</subject><subject>Overloading</subject><subject>popularity normalization</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Recommender systems</subject><subject>Top-N recommendation</subject><subject>two-step recommendation algorithm</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoLCW5-gS8LPa-r75V6c918GEJjapschVYatTJry5XWNs6v77obQuYyw5v33gy8ohhjNMEYqa_T2ex2uZwQhNWEKKoU4x-Ka4KFqiin4uO7-aq4yXmD-pI9xOvrwq1Xy8W3cp0hVd9NBleuTrFadrAvf4GN2y3snOlC3JXPoftTLuL-0JoUunP5M6atacPLsF3Fk0kulz_CEVK-7M3O9ZwjtN35c_HJmzbDzWsfFeu729XsoXp8up_Ppo-VZUh2layZ9Mw7aBDj2AsMToB3nKuGYgCHEVENE8ghC43DzHmDmEWU0Np6JykdFfPB10Wz0fsUtiaddTRB_wdi-q1N6oJtQde2VhwrAAOKEUoa6z0zFAvpATlBeq8vg9c-xb8HyJ3exEPa9e9rwjgXGDOJexYdWDbFnBP4t6sY6Us6ekhHX9LRr-n0qvGgCgDwppCSCCIo_Qd4fIxN</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Niu, Ke</creator><creator>Zhao, Xiangyu</creator><creator>Li, Fangfang</creator><creator>Li, Ning</creator><creator>Peng, Xueping</creator><creator>Chen, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1004-3613</orcidid></search><sort><creationdate>2019</creationdate><title>UTSP: User-Based Two-Step Recommendation With Popularity Normalization Towards Diversity and Novelty</title><author>Niu, Ke ; Zhao, Xiangyu ; Li, Fangfang ; Li, Ning ; Peng, Xueping ; Chen, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8748f4fdeb0451f61ed6efd559b31eed1029b460d0cebd14dfa04c03237cfd833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aggregates</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>collaborative filtering</topic><topic>Information technology</topic><topic>Measurement</topic><topic>Overloading</topic><topic>popularity normalization</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Recommender systems</topic><topic>Top-N recommendation</topic><topic>two-step recommendation algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Ke</creatorcontrib><creatorcontrib>Zhao, Xiangyu</creatorcontrib><creatorcontrib>Li, Fangfang</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Peng, Xueping</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Ke</au><au>Zhao, Xiangyu</au><au>Li, Fangfang</au><au>Li, Ning</au><au>Peng, Xueping</au><au>Chen, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UTSP: User-Based Two-Step Recommendation With Popularity Normalization Towards Diversity and Novelty</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>145426</spage><epage>145434</epage><pages>145426-145434</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Information technologies such as e-commerce and e-news bring overloaded information as well as convenience to users, cooperatives and companies. Recommender system is a significant technology in solving this information overload problem. Due to the outstanding accuracy performance in top-<inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> recommendation tasks, two-step recommendation algorithms are suitable to generate recommendations. However, their recommendation lists are biased towards popular items. In this paper, we propose a user based two-step recommendation algorithm with popularity normalization to improve recommendation diversity and novelty, as well as two evaluation metrics to measure diverse and novel performance. Experimental results demonstrate that our proposed approach significantly improves the diversity and novelty performance while still inheriting the advantage of two-step recommendation approaches on accuracy metrics.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2939945</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1004-3613</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.145426-145434 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8826263 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek; IEEE Xplore Open Access Journals |
subjects | Aggregates Agriculture Algorithms collaborative filtering Information technology Measurement Overloading popularity normalization Prediction algorithms Predictive models Recommender systems Top-N recommendation two-step recommendation algorithm |
title | UTSP: User-Based Two-Step Recommendation With Popularity Normalization Towards Diversity and Novelty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A35%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UTSP:%20User-Based%20Two-Step%20Recommendation%20With%20Popularity%20Normalization%20Towards%20Diversity%20and%20Novelty&rft.jtitle=IEEE%20access&rft.au=Niu,%20Ke&rft.date=2019&rft.volume=7&rft.spage=145426&rft.epage=145434&rft.pages=145426-145434&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2939945&rft_dat=%3Cproquest_ieee_%3E2455611481%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455611481&rft_id=info:pmid/&rft_ieee_id=8826263&rft_doaj_id=oai_doaj_org_article_7c79519eeae94232bcff4a3168fe0d62&rfr_iscdi=true |