UTSP: User-Based Two-Step Recommendation With Popularity Normalization Towards Diversity and Novelty

Information technologies such as e-commerce and e-news bring overloaded information as well as convenience to users, cooperatives and companies. Recommender system is a significant technology in solving this information overload problem. Due to the outstanding accuracy performance in top- N recomme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.145426-145434
Hauptverfasser: Niu, Ke, Zhao, Xiangyu, Li, Fangfang, Li, Ning, Peng, Xueping, Chen, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 145434
container_issue
container_start_page 145426
container_title IEEE access
container_volume 7
creator Niu, Ke
Zhao, Xiangyu
Li, Fangfang
Li, Ning
Peng, Xueping
Chen, Wei
description Information technologies such as e-commerce and e-news bring overloaded information as well as convenience to users, cooperatives and companies. Recommender system is a significant technology in solving this information overload problem. Due to the outstanding accuracy performance in top- N recommendation tasks, two-step recommendation algorithms are suitable to generate recommendations. However, their recommendation lists are biased towards popular items. In this paper, we propose a user based two-step recommendation algorithm with popularity normalization to improve recommendation diversity and novelty, as well as two evaluation metrics to measure diverse and novel performance. Experimental results demonstrate that our proposed approach significantly improves the diversity and novelty performance while still inheriting the advantage of two-step recommendation approaches on accuracy metrics.
doi_str_mv 10.1109/ACCESS.2019.2939945
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8826263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8826263</ieee_id><doaj_id>oai_doaj_org_article_7c79519eeae94232bcff4a3168fe0d62</doaj_id><sourcerecordid>2455611481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8748f4fdeb0451f61ed6efd559b31eed1029b460d0cebd14dfa04c03237cfd833</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoLCW5-gS8LPa-r75V6c918GEJjapschVYatTJry5XWNs6v77obQuYyw5v33gy8ohhjNMEYqa_T2ex2uZwQhNWEKKoU4x-Ka4KFqiin4uO7-aq4yXmD-pI9xOvrwq1Xy8W3cp0hVd9NBleuTrFadrAvf4GN2y3snOlC3JXPoftTLuL-0JoUunP5M6atacPLsF3Fk0kulz_CEVK-7M3O9ZwjtN35c_HJmzbDzWsfFeu729XsoXp8up_Ppo-VZUh2layZ9Mw7aBDj2AsMToB3nKuGYgCHEVENE8ghC43DzHmDmEWU0Np6JykdFfPB10Wz0fsUtiaddTRB_wdi-q1N6oJtQde2VhwrAAOKEUoa6z0zFAvpATlBeq8vg9c-xb8HyJ3exEPa9e9rwjgXGDOJexYdWDbFnBP4t6sY6Us6ekhHX9LRr-n0qvGgCgDwppCSCCIo_Qd4fIxN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455611481</pqid></control><display><type>article</type><title>UTSP: User-Based Two-Step Recommendation With Popularity Normalization Towards Diversity and Novelty</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek</source><source>IEEE Xplore Open Access Journals</source><creator>Niu, Ke ; Zhao, Xiangyu ; Li, Fangfang ; Li, Ning ; Peng, Xueping ; Chen, Wei</creator><creatorcontrib>Niu, Ke ; Zhao, Xiangyu ; Li, Fangfang ; Li, Ning ; Peng, Xueping ; Chen, Wei</creatorcontrib><description>Information technologies such as e-commerce and e-news bring overloaded information as well as convenience to users, cooperatives and companies. Recommender system is a significant technology in solving this information overload problem. Due to the outstanding accuracy performance in top-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;N &lt;/tex-math&gt;&lt;/inline-formula&gt; recommendation tasks, two-step recommendation algorithms are suitable to generate recommendations. However, their recommendation lists are biased towards popular items. In this paper, we propose a user based two-step recommendation algorithm with popularity normalization to improve recommendation diversity and novelty, as well as two evaluation metrics to measure diverse and novel performance. Experimental results demonstrate that our proposed approach significantly improves the diversity and novelty performance while still inheriting the advantage of two-step recommendation approaches on accuracy metrics.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2939945</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aggregates ; Agriculture ; Algorithms ; collaborative filtering ; Information technology ; Measurement ; Overloading ; popularity normalization ; Prediction algorithms ; Predictive models ; Recommender systems ; Top-N recommendation ; two-step recommendation algorithm</subject><ispartof>IEEE access, 2019, Vol.7, p.145426-145434</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8748f4fdeb0451f61ed6efd559b31eed1029b460d0cebd14dfa04c03237cfd833</citedby><cites>FETCH-LOGICAL-c408t-8748f4fdeb0451f61ed6efd559b31eed1029b460d0cebd14dfa04c03237cfd833</cites><orcidid>0000-0003-1004-3613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8826263$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Niu, Ke</creatorcontrib><creatorcontrib>Zhao, Xiangyu</creatorcontrib><creatorcontrib>Li, Fangfang</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Peng, Xueping</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><title>UTSP: User-Based Two-Step Recommendation With Popularity Normalization Towards Diversity and Novelty</title><title>IEEE access</title><addtitle>Access</addtitle><description>Information technologies such as e-commerce and e-news bring overloaded information as well as convenience to users, cooperatives and companies. Recommender system is a significant technology in solving this information overload problem. Due to the outstanding accuracy performance in top-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;N &lt;/tex-math&gt;&lt;/inline-formula&gt; recommendation tasks, two-step recommendation algorithms are suitable to generate recommendations. However, their recommendation lists are biased towards popular items. In this paper, we propose a user based two-step recommendation algorithm with popularity normalization to improve recommendation diversity and novelty, as well as two evaluation metrics to measure diverse and novel performance. Experimental results demonstrate that our proposed approach significantly improves the diversity and novelty performance while still inheriting the advantage of two-step recommendation approaches on accuracy metrics.</description><subject>Aggregates</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>collaborative filtering</subject><subject>Information technology</subject><subject>Measurement</subject><subject>Overloading</subject><subject>popularity normalization</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Recommender systems</subject><subject>Top-N recommendation</subject><subject>two-step recommendation algorithm</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoLCW5-gS8LPa-r75V6c918GEJjapschVYatTJry5XWNs6v77obQuYyw5v33gy8ohhjNMEYqa_T2ex2uZwQhNWEKKoU4x-Ka4KFqiin4uO7-aq4yXmD-pI9xOvrwq1Xy8W3cp0hVd9NBleuTrFadrAvf4GN2y3snOlC3JXPoftTLuL-0JoUunP5M6atacPLsF3Fk0kulz_CEVK-7M3O9ZwjtN35c_HJmzbDzWsfFeu729XsoXp8up_Ppo-VZUh2layZ9Mw7aBDj2AsMToB3nKuGYgCHEVENE8ghC43DzHmDmEWU0Np6JykdFfPB10Wz0fsUtiaddTRB_wdi-q1N6oJtQde2VhwrAAOKEUoa6z0zFAvpATlBeq8vg9c-xb8HyJ3exEPa9e9rwjgXGDOJexYdWDbFnBP4t6sY6Us6ekhHX9LRr-n0qvGgCgDwppCSCCIo_Qd4fIxN</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Niu, Ke</creator><creator>Zhao, Xiangyu</creator><creator>Li, Fangfang</creator><creator>Li, Ning</creator><creator>Peng, Xueping</creator><creator>Chen, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1004-3613</orcidid></search><sort><creationdate>2019</creationdate><title>UTSP: User-Based Two-Step Recommendation With Popularity Normalization Towards Diversity and Novelty</title><author>Niu, Ke ; Zhao, Xiangyu ; Li, Fangfang ; Li, Ning ; Peng, Xueping ; Chen, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8748f4fdeb0451f61ed6efd559b31eed1029b460d0cebd14dfa04c03237cfd833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aggregates</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>collaborative filtering</topic><topic>Information technology</topic><topic>Measurement</topic><topic>Overloading</topic><topic>popularity normalization</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Recommender systems</topic><topic>Top-N recommendation</topic><topic>two-step recommendation algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Ke</creatorcontrib><creatorcontrib>Zhao, Xiangyu</creatorcontrib><creatorcontrib>Li, Fangfang</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Peng, Xueping</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Ke</au><au>Zhao, Xiangyu</au><au>Li, Fangfang</au><au>Li, Ning</au><au>Peng, Xueping</au><au>Chen, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UTSP: User-Based Two-Step Recommendation With Popularity Normalization Towards Diversity and Novelty</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>145426</spage><epage>145434</epage><pages>145426-145434</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Information technologies such as e-commerce and e-news bring overloaded information as well as convenience to users, cooperatives and companies. Recommender system is a significant technology in solving this information overload problem. Due to the outstanding accuracy performance in top-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;N &lt;/tex-math&gt;&lt;/inline-formula&gt; recommendation tasks, two-step recommendation algorithms are suitable to generate recommendations. However, their recommendation lists are biased towards popular items. In this paper, we propose a user based two-step recommendation algorithm with popularity normalization to improve recommendation diversity and novelty, as well as two evaluation metrics to measure diverse and novel performance. Experimental results demonstrate that our proposed approach significantly improves the diversity and novelty performance while still inheriting the advantage of two-step recommendation approaches on accuracy metrics.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2939945</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1004-3613</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.145426-145434
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8826263
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek; IEEE Xplore Open Access Journals
subjects Aggregates
Agriculture
Algorithms
collaborative filtering
Information technology
Measurement
Overloading
popularity normalization
Prediction algorithms
Predictive models
Recommender systems
Top-N recommendation
two-step recommendation algorithm
title UTSP: User-Based Two-Step Recommendation With Popularity Normalization Towards Diversity and Novelty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A35%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UTSP:%20User-Based%20Two-Step%20Recommendation%20With%20Popularity%20Normalization%20Towards%20Diversity%20and%20Novelty&rft.jtitle=IEEE%20access&rft.au=Niu,%20Ke&rft.date=2019&rft.volume=7&rft.spage=145426&rft.epage=145434&rft.pages=145426-145434&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2939945&rft_dat=%3Cproquest_ieee_%3E2455611481%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455611481&rft_id=info:pmid/&rft_ieee_id=8826263&rft_doaj_id=oai_doaj_org_article_7c79519eeae94232bcff4a3168fe0d62&rfr_iscdi=true