Grid Influenced Peer-to-Peer Energy Trading

This paper proposes a peer-to-peer (P2P) energy trading scheme that can help a centralized power system to reduce the total electricity demand of its customers at the peak hour. To do so, a cooperative Stackelberg game is formulated, in which the centralized power system acts as the leader that need...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2020-03, Vol.11 (2), p.1407-1418
Hauptverfasser: Tushar, Wayes, Saha, Tapan Kumar, Yuen, Chau, Morstyn, Thomas, Nahid-Al-Masood, Poor, H. Vincent, Bean, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1418
container_issue 2
container_start_page 1407
container_title IEEE transactions on smart grid
container_volume 11
creator Tushar, Wayes
Saha, Tapan Kumar
Yuen, Chau
Morstyn, Thomas
Nahid-Al-Masood
Poor, H. Vincent
Bean, Richard
description This paper proposes a peer-to-peer (P2P) energy trading scheme that can help a centralized power system to reduce the total electricity demand of its customers at the peak hour. To do so, a cooperative Stackelberg game is formulated, in which the centralized power system acts as the leader that needs to decide on a price at the peak demand period to incentivize prosumers to not seek any energy from it. The prosumers, on the other hand, act as followers and respond to the leader's decision by forming suitable coalitions with neighboring prosumers in order to participate in P2P energy trading to meet their energy demand. The properties of the proposed Stackelberg game are studied. It is shown that the game has a unique and stable Stackelberg equilibrium, as a result of the stability of prosumers' coalitions. At the equilibrium, the leader chooses its strategy using a derived closed-form expression, while the prosumers choose their equilibrium coalition structure. An algorithm is proposed that enables the centralized power system and the prosumers to reach the equilibrium solution. Numerical case studies demonstrate the beneficial properties of the proposed scheme.
doi_str_mv 10.1109/TSG.2019.2937981
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8818368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8818368</ieee_id><sourcerecordid>2359902241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-de01787cb82e1e98443ea2e2713ba64df94058b37856b349a9b6e1f0cd3646fe3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNTeBS8Bj5K6s7PZ7Byl1FgoKFjPSz5mS0pN6iY59N-b0tK5vHN43hl4hHgEOQeQ9Lr5zuZKAs0VYUoWbsQESFOM0sDtdU_wXsy6bifHQUSjaCJeslBX0arx-4GbkqvoiznEfRufMlo2HLbHaBPyqm62D-LO5_uOZ5ecip_35WbxEa8_s9XibR2XaGUfVywhtWlZWMXAZLVGzhWrFLDIja48aZnYAlObmAI15VQYBi_LCo02nnEqns93D6H9G7jr3a4dQjO-dAoTIqmUhpGSZ6oMbdcF9u4Q6t88HB1Id7LiRivuZMVdrIyVp3OlZuYrbi1YNBb_AVpjWwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359902241</pqid></control><display><type>article</type><title>Grid Influenced Peer-to-Peer Energy Trading</title><source>IEEE Electronic Library (IEL)</source><creator>Tushar, Wayes ; Saha, Tapan Kumar ; Yuen, Chau ; Morstyn, Thomas ; Nahid-Al-Masood ; Poor, H. Vincent ; Bean, Richard</creator><creatorcontrib>Tushar, Wayes ; Saha, Tapan Kumar ; Yuen, Chau ; Morstyn, Thomas ; Nahid-Al-Masood ; Poor, H. Vincent ; Bean, Richard</creatorcontrib><description>This paper proposes a peer-to-peer (P2P) energy trading scheme that can help a centralized power system to reduce the total electricity demand of its customers at the peak hour. To do so, a cooperative Stackelberg game is formulated, in which the centralized power system acts as the leader that needs to decide on a price at the peak demand period to incentivize prosumers to not seek any energy from it. The prosumers, on the other hand, act as followers and respond to the leader's decision by forming suitable coalitions with neighboring prosumers in order to participate in P2P energy trading to meet their energy demand. The properties of the proposed Stackelberg game are studied. It is shown that the game has a unique and stable Stackelberg equilibrium, as a result of the stability of prosumers' coalitions. At the equilibrium, the leader chooses its strategy using a derived closed-form expression, while the prosumers choose their equilibrium coalition structure. An algorithm is proposed that enables the centralized power system and the prosumers to reach the equilibrium solution. Numerical case studies demonstrate the beneficial properties of the proposed scheme.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2019.2937981</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; auction ; Batteries ; Blockchain ; coalition formation ; Contracts ; Electric power demand ; Electric power systems ; Electricity consumption ; energy trading ; Equilibrium ; Game theory ; Games ; Microgrids ; Peak load ; Peer-to-peer ; Peer-to-peer computing ; Power system stability ; prosumer</subject><ispartof>IEEE transactions on smart grid, 2020-03, Vol.11 (2), p.1407-1418</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-de01787cb82e1e98443ea2e2713ba64df94058b37856b349a9b6e1f0cd3646fe3</citedby><cites>FETCH-LOGICAL-c380t-de01787cb82e1e98443ea2e2713ba64df94058b37856b349a9b6e1f0cd3646fe3</cites><orcidid>0000-0002-9307-2120 ; 0000-0002-1723-6760 ; 0000-0002-6821-8327 ; 0000-0002-2062-131X ; 0000-0003-0763-0032 ; 0000-0003-1055-7200 ; 0000-0003-2781-9588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8818368$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8818368$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tushar, Wayes</creatorcontrib><creatorcontrib>Saha, Tapan Kumar</creatorcontrib><creatorcontrib>Yuen, Chau</creatorcontrib><creatorcontrib>Morstyn, Thomas</creatorcontrib><creatorcontrib>Nahid-Al-Masood</creatorcontrib><creatorcontrib>Poor, H. Vincent</creatorcontrib><creatorcontrib>Bean, Richard</creatorcontrib><title>Grid Influenced Peer-to-Peer Energy Trading</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>This paper proposes a peer-to-peer (P2P) energy trading scheme that can help a centralized power system to reduce the total electricity demand of its customers at the peak hour. To do so, a cooperative Stackelberg game is formulated, in which the centralized power system acts as the leader that needs to decide on a price at the peak demand period to incentivize prosumers to not seek any energy from it. The prosumers, on the other hand, act as followers and respond to the leader's decision by forming suitable coalitions with neighboring prosumers in order to participate in P2P energy trading to meet their energy demand. The properties of the proposed Stackelberg game are studied. It is shown that the game has a unique and stable Stackelberg equilibrium, as a result of the stability of prosumers' coalitions. At the equilibrium, the leader chooses its strategy using a derived closed-form expression, while the prosumers choose their equilibrium coalition structure. An algorithm is proposed that enables the centralized power system and the prosumers to reach the equilibrium solution. Numerical case studies demonstrate the beneficial properties of the proposed scheme.</description><subject>Algorithms</subject><subject>auction</subject><subject>Batteries</subject><subject>Blockchain</subject><subject>coalition formation</subject><subject>Contracts</subject><subject>Electric power demand</subject><subject>Electric power systems</subject><subject>Electricity consumption</subject><subject>energy trading</subject><subject>Equilibrium</subject><subject>Game theory</subject><subject>Games</subject><subject>Microgrids</subject><subject>Peak load</subject><subject>Peer-to-peer</subject><subject>Peer-to-peer computing</subject><subject>Power system stability</subject><subject>prosumer</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsNTeBS8Bj5K6s7PZ7Byl1FgoKFjPSz5mS0pN6iY59N-b0tK5vHN43hl4hHgEOQeQ9Lr5zuZKAs0VYUoWbsQESFOM0sDtdU_wXsy6bifHQUSjaCJeslBX0arx-4GbkqvoiznEfRufMlo2HLbHaBPyqm62D-LO5_uOZ5ecip_35WbxEa8_s9XibR2XaGUfVywhtWlZWMXAZLVGzhWrFLDIja48aZnYAlObmAI15VQYBi_LCo02nnEqns93D6H9G7jr3a4dQjO-dAoTIqmUhpGSZ6oMbdcF9u4Q6t88HB1Id7LiRivuZMVdrIyVp3OlZuYrbi1YNBb_AVpjWwg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Tushar, Wayes</creator><creator>Saha, Tapan Kumar</creator><creator>Yuen, Chau</creator><creator>Morstyn, Thomas</creator><creator>Nahid-Al-Masood</creator><creator>Poor, H. Vincent</creator><creator>Bean, Richard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9307-2120</orcidid><orcidid>https://orcid.org/0000-0002-1723-6760</orcidid><orcidid>https://orcid.org/0000-0002-6821-8327</orcidid><orcidid>https://orcid.org/0000-0002-2062-131X</orcidid><orcidid>https://orcid.org/0000-0003-0763-0032</orcidid><orcidid>https://orcid.org/0000-0003-1055-7200</orcidid><orcidid>https://orcid.org/0000-0003-2781-9588</orcidid></search><sort><creationdate>20200301</creationdate><title>Grid Influenced Peer-to-Peer Energy Trading</title><author>Tushar, Wayes ; Saha, Tapan Kumar ; Yuen, Chau ; Morstyn, Thomas ; Nahid-Al-Masood ; Poor, H. Vincent ; Bean, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-de01787cb82e1e98443ea2e2713ba64df94058b37856b349a9b6e1f0cd3646fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>auction</topic><topic>Batteries</topic><topic>Blockchain</topic><topic>coalition formation</topic><topic>Contracts</topic><topic>Electric power demand</topic><topic>Electric power systems</topic><topic>Electricity consumption</topic><topic>energy trading</topic><topic>Equilibrium</topic><topic>Game theory</topic><topic>Games</topic><topic>Microgrids</topic><topic>Peak load</topic><topic>Peer-to-peer</topic><topic>Peer-to-peer computing</topic><topic>Power system stability</topic><topic>prosumer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tushar, Wayes</creatorcontrib><creatorcontrib>Saha, Tapan Kumar</creatorcontrib><creatorcontrib>Yuen, Chau</creatorcontrib><creatorcontrib>Morstyn, Thomas</creatorcontrib><creatorcontrib>Nahid-Al-Masood</creatorcontrib><creatorcontrib>Poor, H. Vincent</creatorcontrib><creatorcontrib>Bean, Richard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tushar, Wayes</au><au>Saha, Tapan Kumar</au><au>Yuen, Chau</au><au>Morstyn, Thomas</au><au>Nahid-Al-Masood</au><au>Poor, H. Vincent</au><au>Bean, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grid Influenced Peer-to-Peer Energy Trading</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>11</volume><issue>2</issue><spage>1407</spage><epage>1418</epage><pages>1407-1418</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>This paper proposes a peer-to-peer (P2P) energy trading scheme that can help a centralized power system to reduce the total electricity demand of its customers at the peak hour. To do so, a cooperative Stackelberg game is formulated, in which the centralized power system acts as the leader that needs to decide on a price at the peak demand period to incentivize prosumers to not seek any energy from it. The prosumers, on the other hand, act as followers and respond to the leader's decision by forming suitable coalitions with neighboring prosumers in order to participate in P2P energy trading to meet their energy demand. The properties of the proposed Stackelberg game are studied. It is shown that the game has a unique and stable Stackelberg equilibrium, as a result of the stability of prosumers' coalitions. At the equilibrium, the leader chooses its strategy using a derived closed-form expression, while the prosumers choose their equilibrium coalition structure. An algorithm is proposed that enables the centralized power system and the prosumers to reach the equilibrium solution. Numerical case studies demonstrate the beneficial properties of the proposed scheme.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2019.2937981</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9307-2120</orcidid><orcidid>https://orcid.org/0000-0002-1723-6760</orcidid><orcidid>https://orcid.org/0000-0002-6821-8327</orcidid><orcidid>https://orcid.org/0000-0002-2062-131X</orcidid><orcidid>https://orcid.org/0000-0003-0763-0032</orcidid><orcidid>https://orcid.org/0000-0003-1055-7200</orcidid><orcidid>https://orcid.org/0000-0003-2781-9588</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2020-03, Vol.11 (2), p.1407-1418
issn 1949-3053
1949-3061
language eng
recordid cdi_ieee_primary_8818368
source IEEE Electronic Library (IEL)
subjects Algorithms
auction
Batteries
Blockchain
coalition formation
Contracts
Electric power demand
Electric power systems
Electricity consumption
energy trading
Equilibrium
Game theory
Games
Microgrids
Peak load
Peer-to-peer
Peer-to-peer computing
Power system stability
prosumer
title Grid Influenced Peer-to-Peer Energy Trading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grid%20Influenced%20Peer-to-Peer%20Energy%20Trading&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Tushar,%20Wayes&rft.date=2020-03-01&rft.volume=11&rft.issue=2&rft.spage=1407&rft.epage=1418&rft.pages=1407-1418&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2019.2937981&rft_dat=%3Cproquest_RIE%3E2359902241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359902241&rft_id=info:pmid/&rft_ieee_id=8818368&rfr_iscdi=true