Grid Influenced Peer-to-Peer Energy Trading
This paper proposes a peer-to-peer (P2P) energy trading scheme that can help a centralized power system to reduce the total electricity demand of its customers at the peak hour. To do so, a cooperative Stackelberg game is formulated, in which the centralized power system acts as the leader that need...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2020-03, Vol.11 (2), p.1407-1418 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1418 |
---|---|
container_issue | 2 |
container_start_page | 1407 |
container_title | IEEE transactions on smart grid |
container_volume | 11 |
creator | Tushar, Wayes Saha, Tapan Kumar Yuen, Chau Morstyn, Thomas Nahid-Al-Masood Poor, H. Vincent Bean, Richard |
description | This paper proposes a peer-to-peer (P2P) energy trading scheme that can help a centralized power system to reduce the total electricity demand of its customers at the peak hour. To do so, a cooperative Stackelberg game is formulated, in which the centralized power system acts as the leader that needs to decide on a price at the peak demand period to incentivize prosumers to not seek any energy from it. The prosumers, on the other hand, act as followers and respond to the leader's decision by forming suitable coalitions with neighboring prosumers in order to participate in P2P energy trading to meet their energy demand. The properties of the proposed Stackelberg game are studied. It is shown that the game has a unique and stable Stackelberg equilibrium, as a result of the stability of prosumers' coalitions. At the equilibrium, the leader chooses its strategy using a derived closed-form expression, while the prosumers choose their equilibrium coalition structure. An algorithm is proposed that enables the centralized power system and the prosumers to reach the equilibrium solution. Numerical case studies demonstrate the beneficial properties of the proposed scheme. |
doi_str_mv | 10.1109/TSG.2019.2937981 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8818368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8818368</ieee_id><sourcerecordid>2359902241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-de01787cb82e1e98443ea2e2713ba64df94058b37856b349a9b6e1f0cd3646fe3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNTeBS8Bj5K6s7PZ7Byl1FgoKFjPSz5mS0pN6iY59N-b0tK5vHN43hl4hHgEOQeQ9Lr5zuZKAs0VYUoWbsQESFOM0sDtdU_wXsy6bifHQUSjaCJeslBX0arx-4GbkqvoiznEfRufMlo2HLbHaBPyqm62D-LO5_uOZ5ecip_35WbxEa8_s9XibR2XaGUfVywhtWlZWMXAZLVGzhWrFLDIja48aZnYAlObmAI15VQYBi_LCo02nnEqns93D6H9G7jr3a4dQjO-dAoTIqmUhpGSZ6oMbdcF9u4Q6t88HB1Id7LiRivuZMVdrIyVp3OlZuYrbi1YNBb_AVpjWwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359902241</pqid></control><display><type>article</type><title>Grid Influenced Peer-to-Peer Energy Trading</title><source>IEEE Electronic Library (IEL)</source><creator>Tushar, Wayes ; Saha, Tapan Kumar ; Yuen, Chau ; Morstyn, Thomas ; Nahid-Al-Masood ; Poor, H. Vincent ; Bean, Richard</creator><creatorcontrib>Tushar, Wayes ; Saha, Tapan Kumar ; Yuen, Chau ; Morstyn, Thomas ; Nahid-Al-Masood ; Poor, H. Vincent ; Bean, Richard</creatorcontrib><description>This paper proposes a peer-to-peer (P2P) energy trading scheme that can help a centralized power system to reduce the total electricity demand of its customers at the peak hour. To do so, a cooperative Stackelberg game is formulated, in which the centralized power system acts as the leader that needs to decide on a price at the peak demand period to incentivize prosumers to not seek any energy from it. The prosumers, on the other hand, act as followers and respond to the leader's decision by forming suitable coalitions with neighboring prosumers in order to participate in P2P energy trading to meet their energy demand. The properties of the proposed Stackelberg game are studied. It is shown that the game has a unique and stable Stackelberg equilibrium, as a result of the stability of prosumers' coalitions. At the equilibrium, the leader chooses its strategy using a derived closed-form expression, while the prosumers choose their equilibrium coalition structure. An algorithm is proposed that enables the centralized power system and the prosumers to reach the equilibrium solution. Numerical case studies demonstrate the beneficial properties of the proposed scheme.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2019.2937981</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; auction ; Batteries ; Blockchain ; coalition formation ; Contracts ; Electric power demand ; Electric power systems ; Electricity consumption ; energy trading ; Equilibrium ; Game theory ; Games ; Microgrids ; Peak load ; Peer-to-peer ; Peer-to-peer computing ; Power system stability ; prosumer</subject><ispartof>IEEE transactions on smart grid, 2020-03, Vol.11 (2), p.1407-1418</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-de01787cb82e1e98443ea2e2713ba64df94058b37856b349a9b6e1f0cd3646fe3</citedby><cites>FETCH-LOGICAL-c380t-de01787cb82e1e98443ea2e2713ba64df94058b37856b349a9b6e1f0cd3646fe3</cites><orcidid>0000-0002-9307-2120 ; 0000-0002-1723-6760 ; 0000-0002-6821-8327 ; 0000-0002-2062-131X ; 0000-0003-0763-0032 ; 0000-0003-1055-7200 ; 0000-0003-2781-9588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8818368$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8818368$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tushar, Wayes</creatorcontrib><creatorcontrib>Saha, Tapan Kumar</creatorcontrib><creatorcontrib>Yuen, Chau</creatorcontrib><creatorcontrib>Morstyn, Thomas</creatorcontrib><creatorcontrib>Nahid-Al-Masood</creatorcontrib><creatorcontrib>Poor, H. Vincent</creatorcontrib><creatorcontrib>Bean, Richard</creatorcontrib><title>Grid Influenced Peer-to-Peer Energy Trading</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>This paper proposes a peer-to-peer (P2P) energy trading scheme that can help a centralized power system to reduce the total electricity demand of its customers at the peak hour. To do so, a cooperative Stackelberg game is formulated, in which the centralized power system acts as the leader that needs to decide on a price at the peak demand period to incentivize prosumers to not seek any energy from it. The prosumers, on the other hand, act as followers and respond to the leader's decision by forming suitable coalitions with neighboring prosumers in order to participate in P2P energy trading to meet their energy demand. The properties of the proposed Stackelberg game are studied. It is shown that the game has a unique and stable Stackelberg equilibrium, as a result of the stability of prosumers' coalitions. At the equilibrium, the leader chooses its strategy using a derived closed-form expression, while the prosumers choose their equilibrium coalition structure. An algorithm is proposed that enables the centralized power system and the prosumers to reach the equilibrium solution. Numerical case studies demonstrate the beneficial properties of the proposed scheme.</description><subject>Algorithms</subject><subject>auction</subject><subject>Batteries</subject><subject>Blockchain</subject><subject>coalition formation</subject><subject>Contracts</subject><subject>Electric power demand</subject><subject>Electric power systems</subject><subject>Electricity consumption</subject><subject>energy trading</subject><subject>Equilibrium</subject><subject>Game theory</subject><subject>Games</subject><subject>Microgrids</subject><subject>Peak load</subject><subject>Peer-to-peer</subject><subject>Peer-to-peer computing</subject><subject>Power system stability</subject><subject>prosumer</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsNTeBS8Bj5K6s7PZ7Byl1FgoKFjPSz5mS0pN6iY59N-b0tK5vHN43hl4hHgEOQeQ9Lr5zuZKAs0VYUoWbsQESFOM0sDtdU_wXsy6bifHQUSjaCJeslBX0arx-4GbkqvoiznEfRufMlo2HLbHaBPyqm62D-LO5_uOZ5ecip_35WbxEa8_s9XibR2XaGUfVywhtWlZWMXAZLVGzhWrFLDIja48aZnYAlObmAI15VQYBi_LCo02nnEqns93D6H9G7jr3a4dQjO-dAoTIqmUhpGSZ6oMbdcF9u4Q6t88HB1Id7LiRivuZMVdrIyVp3OlZuYrbi1YNBb_AVpjWwg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Tushar, Wayes</creator><creator>Saha, Tapan Kumar</creator><creator>Yuen, Chau</creator><creator>Morstyn, Thomas</creator><creator>Nahid-Al-Masood</creator><creator>Poor, H. Vincent</creator><creator>Bean, Richard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9307-2120</orcidid><orcidid>https://orcid.org/0000-0002-1723-6760</orcidid><orcidid>https://orcid.org/0000-0002-6821-8327</orcidid><orcidid>https://orcid.org/0000-0002-2062-131X</orcidid><orcidid>https://orcid.org/0000-0003-0763-0032</orcidid><orcidid>https://orcid.org/0000-0003-1055-7200</orcidid><orcidid>https://orcid.org/0000-0003-2781-9588</orcidid></search><sort><creationdate>20200301</creationdate><title>Grid Influenced Peer-to-Peer Energy Trading</title><author>Tushar, Wayes ; Saha, Tapan Kumar ; Yuen, Chau ; Morstyn, Thomas ; Nahid-Al-Masood ; Poor, H. Vincent ; Bean, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-de01787cb82e1e98443ea2e2713ba64df94058b37856b349a9b6e1f0cd3646fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>auction</topic><topic>Batteries</topic><topic>Blockchain</topic><topic>coalition formation</topic><topic>Contracts</topic><topic>Electric power demand</topic><topic>Electric power systems</topic><topic>Electricity consumption</topic><topic>energy trading</topic><topic>Equilibrium</topic><topic>Game theory</topic><topic>Games</topic><topic>Microgrids</topic><topic>Peak load</topic><topic>Peer-to-peer</topic><topic>Peer-to-peer computing</topic><topic>Power system stability</topic><topic>prosumer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tushar, Wayes</creatorcontrib><creatorcontrib>Saha, Tapan Kumar</creatorcontrib><creatorcontrib>Yuen, Chau</creatorcontrib><creatorcontrib>Morstyn, Thomas</creatorcontrib><creatorcontrib>Nahid-Al-Masood</creatorcontrib><creatorcontrib>Poor, H. Vincent</creatorcontrib><creatorcontrib>Bean, Richard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tushar, Wayes</au><au>Saha, Tapan Kumar</au><au>Yuen, Chau</au><au>Morstyn, Thomas</au><au>Nahid-Al-Masood</au><au>Poor, H. Vincent</au><au>Bean, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grid Influenced Peer-to-Peer Energy Trading</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>11</volume><issue>2</issue><spage>1407</spage><epage>1418</epage><pages>1407-1418</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>This paper proposes a peer-to-peer (P2P) energy trading scheme that can help a centralized power system to reduce the total electricity demand of its customers at the peak hour. To do so, a cooperative Stackelberg game is formulated, in which the centralized power system acts as the leader that needs to decide on a price at the peak demand period to incentivize prosumers to not seek any energy from it. The prosumers, on the other hand, act as followers and respond to the leader's decision by forming suitable coalitions with neighboring prosumers in order to participate in P2P energy trading to meet their energy demand. The properties of the proposed Stackelberg game are studied. It is shown that the game has a unique and stable Stackelberg equilibrium, as a result of the stability of prosumers' coalitions. At the equilibrium, the leader chooses its strategy using a derived closed-form expression, while the prosumers choose their equilibrium coalition structure. An algorithm is proposed that enables the centralized power system and the prosumers to reach the equilibrium solution. Numerical case studies demonstrate the beneficial properties of the proposed scheme.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2019.2937981</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9307-2120</orcidid><orcidid>https://orcid.org/0000-0002-1723-6760</orcidid><orcidid>https://orcid.org/0000-0002-6821-8327</orcidid><orcidid>https://orcid.org/0000-0002-2062-131X</orcidid><orcidid>https://orcid.org/0000-0003-0763-0032</orcidid><orcidid>https://orcid.org/0000-0003-1055-7200</orcidid><orcidid>https://orcid.org/0000-0003-2781-9588</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2020-03, Vol.11 (2), p.1407-1418 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_ieee_primary_8818368 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms auction Batteries Blockchain coalition formation Contracts Electric power demand Electric power systems Electricity consumption energy trading Equilibrium Game theory Games Microgrids Peak load Peer-to-peer Peer-to-peer computing Power system stability prosumer |
title | Grid Influenced Peer-to-Peer Energy Trading |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grid%20Influenced%20Peer-to-Peer%20Energy%20Trading&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Tushar,%20Wayes&rft.date=2020-03-01&rft.volume=11&rft.issue=2&rft.spage=1407&rft.epage=1418&rft.pages=1407-1418&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2019.2937981&rft_dat=%3Cproquest_RIE%3E2359902241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359902241&rft_id=info:pmid/&rft_ieee_id=8818368&rfr_iscdi=true |