A Hierarchical Bidirectional GRU Model With Attention for EEG-Based Emotion Classification

In this paper, we propose a hierarchical bidirectional Gated Recurrent Unit (GRU) network with attention for human emotion classification from continues electroencephalogram (EEG) signals. The structure of the model mirrors the hierarchical structure of EEG signals, and the attention mechanism is us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.118530-118540
Hauptverfasser: Chen, J. X., Jiang, D. M., Zhang, Y. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118540
container_issue
container_start_page 118530
container_title IEEE access
container_volume 7
creator Chen, J. X.
Jiang, D. M.
Zhang, Y. N.
description In this paper, we propose a hierarchical bidirectional Gated Recurrent Unit (GRU) network with attention for human emotion classification from continues electroencephalogram (EEG) signals. The structure of the model mirrors the hierarchical structure of EEG signals, and the attention mechanism is used at two levels of EEG samples and epochs. By paying different levels of attention to content with different importance, the model can learn more significant feature representation of EEG sequence which highlights the contribution of important samples and epochs to its emotional categories. We conduct the cross-subject emotion classification experiments on DEAP data set to evaluate the model performance. The experimental results show that in valence and arousal dimensions, our model on 1-s segmented EEG sequences outperforms the best deep baseline LSTM model by 4.2% and 4.6%, and outperforms the best shallow baseline model by 11.7% and 12% respectively. Moreover, with increase of the epoch's length of EEG sequences, our model shows more robust classification performance than baseline models, which demonstrates that the proposed model can effectively reduce the impact of long-term non-stationarity of EEG sequences and improve the accuracy and robustness of EEG-based emotion classification.
doi_str_mv 10.1109/ACCESS.2019.2936817
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8809690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8809690</ieee_id><doaj_id>oai_doaj_org_article_24f2e636a2d64538b8ca4a1ba06370db</doaj_id><sourcerecordid>2455606081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-7a4dcbe103398c389d252f8578c98db39fe12e9fe8464704ad19adac90d7844a3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaKg1P4CLwuet-Zrs8mxXdYqKIJVBC9hmmRtymo0WQ_-e9NuEeeQmXmZ9wbmIXRB8IwQrK7mTdOuVjOKiZpRxYQk9RE6o0SoklVMHP-rT9E0pS3OITNU1WfodV7ceBchmo030BcLb310ZvDhI3fLx-fiPljXFy9-2BTzYXAfu6-iC7Fo22W5gORs0b6HPdr0kJLvstCuPUcnHfTJTQ95gp6v26fmprx7WN4287vS8EoOZQ3cmrUjmDElDZPK0op2sqqlUdKumeocoS6_kgteYw6WKLBgFLa15BzYBN2OujbAVn9G_w7xRwfweg-E-KYhDt70TlPeUSeYAGoFr5hcSwMcyBqwYDXOyyboctT6jOHr26VBb8N3zKdImVtVAot8uTzFxikTQ0rRdX9bCdY7T_Toid55og-eZNbFyPLOuT-GlFgJhdkv9yKGhQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455606081</pqid></control><display><type>article</type><title>A Hierarchical Bidirectional GRU Model With Attention for EEG-Based Emotion Classification</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, J. X. ; Jiang, D. M. ; Zhang, Y. N.</creator><creatorcontrib>Chen, J. X. ; Jiang, D. M. ; Zhang, Y. N.</creatorcontrib><description>In this paper, we propose a hierarchical bidirectional Gated Recurrent Unit (GRU) network with attention for human emotion classification from continues electroencephalogram (EEG) signals. The structure of the model mirrors the hierarchical structure of EEG signals, and the attention mechanism is used at two levels of EEG samples and epochs. By paying different levels of attention to content with different importance, the model can learn more significant feature representation of EEG sequence which highlights the contribution of important samples and epochs to its emotional categories. We conduct the cross-subject emotion classification experiments on DEAP data set to evaluate the model performance. The experimental results show that in valence and arousal dimensions, our model on 1-s segmented EEG sequences outperforms the best deep baseline LSTM model by 4.2% and 4.6%, and outperforms the best shallow baseline model by 11.7% and 12% respectively. Moreover, with increase of the epoch's length of EEG sequences, our model shows more robust classification performance than baseline models, which demonstrates that the proposed model can effectively reduce the impact of long-term non-stationarity of EEG sequences and improve the accuracy and robustness of EEG-based emotion classification.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2936817</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Arousal ; attention ; bidirectional GRU ; Brain modeling ; Classification ; Data models ; Deep learning ; EEG ; Electroencephalography ; emotion classification ; Emotions ; Feature extraction ; Hierarchical ; Logic gates ; Performance evaluation ; Structural hierarchy</subject><ispartof>IEEE access, 2019, Vol.7, p.118530-118540</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-7a4dcbe103398c389d252f8578c98db39fe12e9fe8464704ad19adac90d7844a3</citedby><cites>FETCH-LOGICAL-c458t-7a4dcbe103398c389d252f8578c98db39fe12e9fe8464704ad19adac90d7844a3</cites><orcidid>0000-0002-1994-4752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8809690$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Chen, J. X.</creatorcontrib><creatorcontrib>Jiang, D. M.</creatorcontrib><creatorcontrib>Zhang, Y. N.</creatorcontrib><title>A Hierarchical Bidirectional GRU Model With Attention for EEG-Based Emotion Classification</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, we propose a hierarchical bidirectional Gated Recurrent Unit (GRU) network with attention for human emotion classification from continues electroencephalogram (EEG) signals. The structure of the model mirrors the hierarchical structure of EEG signals, and the attention mechanism is used at two levels of EEG samples and epochs. By paying different levels of attention to content with different importance, the model can learn more significant feature representation of EEG sequence which highlights the contribution of important samples and epochs to its emotional categories. We conduct the cross-subject emotion classification experiments on DEAP data set to evaluate the model performance. The experimental results show that in valence and arousal dimensions, our model on 1-s segmented EEG sequences outperforms the best deep baseline LSTM model by 4.2% and 4.6%, and outperforms the best shallow baseline model by 11.7% and 12% respectively. Moreover, with increase of the epoch's length of EEG sequences, our model shows more robust classification performance than baseline models, which demonstrates that the proposed model can effectively reduce the impact of long-term non-stationarity of EEG sequences and improve the accuracy and robustness of EEG-based emotion classification.</description><subject>Adaptation models</subject><subject>Arousal</subject><subject>attention</subject><subject>bidirectional GRU</subject><subject>Brain modeling</subject><subject>Classification</subject><subject>Data models</subject><subject>Deep learning</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>emotion classification</subject><subject>Emotions</subject><subject>Feature extraction</subject><subject>Hierarchical</subject><subject>Logic gates</subject><subject>Performance evaluation</subject><subject>Structural hierarchy</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQDaKg1P4CLwuet-Zrs8mxXdYqKIJVBC9hmmRtymo0WQ_-e9NuEeeQmXmZ9wbmIXRB8IwQrK7mTdOuVjOKiZpRxYQk9RE6o0SoklVMHP-rT9E0pS3OITNU1WfodV7ceBchmo030BcLb310ZvDhI3fLx-fiPljXFy9-2BTzYXAfu6-iC7Fo22W5gORs0b6HPdr0kJLvstCuPUcnHfTJTQ95gp6v26fmprx7WN4287vS8EoOZQ3cmrUjmDElDZPK0op2sqqlUdKumeocoS6_kgteYw6WKLBgFLa15BzYBN2OujbAVn9G_w7xRwfweg-E-KYhDt70TlPeUSeYAGoFr5hcSwMcyBqwYDXOyyboctT6jOHr26VBb8N3zKdImVtVAot8uTzFxikTQ0rRdX9bCdY7T_Toid55og-eZNbFyPLOuT-GlFgJhdkv9yKGhQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Chen, J. X.</creator><creator>Jiang, D. M.</creator><creator>Zhang, Y. N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1994-4752</orcidid></search><sort><creationdate>2019</creationdate><title>A Hierarchical Bidirectional GRU Model With Attention for EEG-Based Emotion Classification</title><author>Chen, J. X. ; Jiang, D. M. ; Zhang, Y. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-7a4dcbe103398c389d252f8578c98db39fe12e9fe8464704ad19adac90d7844a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>Arousal</topic><topic>attention</topic><topic>bidirectional GRU</topic><topic>Brain modeling</topic><topic>Classification</topic><topic>Data models</topic><topic>Deep learning</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>emotion classification</topic><topic>Emotions</topic><topic>Feature extraction</topic><topic>Hierarchical</topic><topic>Logic gates</topic><topic>Performance evaluation</topic><topic>Structural hierarchy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, J. X.</creatorcontrib><creatorcontrib>Jiang, D. M.</creatorcontrib><creatorcontrib>Zhang, Y. N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, J. X.</au><au>Jiang, D. M.</au><au>Zhang, Y. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hierarchical Bidirectional GRU Model With Attention for EEG-Based Emotion Classification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>118530</spage><epage>118540</epage><pages>118530-118540</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, we propose a hierarchical bidirectional Gated Recurrent Unit (GRU) network with attention for human emotion classification from continues electroencephalogram (EEG) signals. The structure of the model mirrors the hierarchical structure of EEG signals, and the attention mechanism is used at two levels of EEG samples and epochs. By paying different levels of attention to content with different importance, the model can learn more significant feature representation of EEG sequence which highlights the contribution of important samples and epochs to its emotional categories. We conduct the cross-subject emotion classification experiments on DEAP data set to evaluate the model performance. The experimental results show that in valence and arousal dimensions, our model on 1-s segmented EEG sequences outperforms the best deep baseline LSTM model by 4.2% and 4.6%, and outperforms the best shallow baseline model by 11.7% and 12% respectively. Moreover, with increase of the epoch's length of EEG sequences, our model shows more robust classification performance than baseline models, which demonstrates that the proposed model can effectively reduce the impact of long-term non-stationarity of EEG sequences and improve the accuracy and robustness of EEG-based emotion classification.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2936817</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1994-4752</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.118530-118540
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8809690
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptation models
Arousal
attention
bidirectional GRU
Brain modeling
Classification
Data models
Deep learning
EEG
Electroencephalography
emotion classification
Emotions
Feature extraction
Hierarchical
Logic gates
Performance evaluation
Structural hierarchy
title A Hierarchical Bidirectional GRU Model With Attention for EEG-Based Emotion Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hierarchical%20Bidirectional%20GRU%20Model%20With%20Attention%20for%20EEG-Based%20Emotion%20Classification&rft.jtitle=IEEE%20access&rft.au=Chen,%20J.%20X.&rft.date=2019&rft.volume=7&rft.spage=118530&rft.epage=118540&rft.pages=118530-118540&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2936817&rft_dat=%3Cproquest_ieee_%3E2455606081%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455606081&rft_id=info:pmid/&rft_ieee_id=8809690&rft_doaj_id=oai_doaj_org_article_24f2e636a2d64538b8ca4a1ba06370db&rfr_iscdi=true