Detecting Performance Bottlenecks Guided by Resource Usage
Detecting performance bottlenecks is critical to fix software performance issues. A great part of performance bottlenecks are related to resource usages, which can be affected by configurations. To detect configuration-related performance bottlenecks, the existing works either use learning methods t...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.117839-117849 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117849 |
---|---|
container_issue | |
container_start_page | 117839 |
container_title | IEEE access |
container_volume | 7 |
creator | Li, Shanshan Jia, Zhouyang Li, Yunfeng Liao, Xiangke Xu, Erci Liu, Xiaodong He, Haochen Gao, Long |
description | Detecting performance bottlenecks is critical to fix software performance issues. A great part of performance bottlenecks are related to resource usages, which can be affected by configurations. To detect configuration-related performance bottlenecks, the existing works either use learning methods to model the relationships between performance and configurations, or use profiling methods to monitor the execution time. The learning methods are time-consuming when analyzing software with large amounts of configurations, while the profiling methods can incur excessive overheads. In this paper, we conduct empirical studies on configurations, performance and resources. We find that 1) 49% performance issues can be improved or fixed by configurations; 2) 71% configurations affect the performance by tuning resource usage in a simple way; and 3) four types of resources contribute the main causes of performance issues. Inspired by these findings, we design PBHunter, a resource-guided instrumentation tool to detect configuration-related performance bottlenecks. PBHunter ranks configurations by resource usage and selects the ones that heavily affect resource usages. Guided by selected configurations, PBHunter applies the code instrumentation technique in resource-related code snippets. The evaluation shows PBHunter can effectively (36/50) expose the culprits of performance issues with minor overheads (5.1% on average). |
doi_str_mv | 10.1109/ACCESS.2019.2936599 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8808844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8808844</ieee_id><doaj_id>oai_doaj_org_article_f28f4e3587e74b74838138db1f38bc7b</doaj_id><sourcerecordid>2455605636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-5d7e99140dac31ad0f1ff8e1405f448108dae19921c4a36974a390c3593310783</originalsourceid><addsrcrecordid>eNpNUMFOAjEQbYwmEuQLuGziebHdtrutN1wRSUg0Iuem252SRdhiuxz4e4tLjHOYmbzOezN9CI0JnhCC5cO0LGer1STDRE4ySXMu5RUaZCSXKeU0v_7X36JRCFscQ0SIFwP0-AwdmK5pN8k7eOv8XrcGkifXdTtowXyFZH5saqiT6pR8QHBHH5_XQW_gDt1YvQswutQhWr_MPsvXdPk2X5TTZWooF13K6wKkJAzX2lCia2yJtQIiwC1jgmBRayBSZsQwTXNZxCxx5EpKCS4EHaJFr1s7vVUH3-y1PymnG_ULOL9R2neN2YGymbAM4toCClYVTFBBqKgrYqmoTFFFrfte6-Dd9xFCp7bxR208X2WM8xzznOZxivZTxrsQPNi_rQSrs-eq91ydPVcXzyNr3LMaAPhjCIGFYIz-AJSMero</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455605636</pqid></control><display><type>article</type><title>Detecting Performance Bottlenecks Guided by Resource Usage</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Shanshan ; Jia, Zhouyang ; Li, Yunfeng ; Liao, Xiangke ; Xu, Erci ; Liu, Xiaodong ; He, Haochen ; Gao, Long</creator><creatorcontrib>Li, Shanshan ; Jia, Zhouyang ; Li, Yunfeng ; Liao, Xiangke ; Xu, Erci ; Liu, Xiaodong ; He, Haochen ; Gao, Long</creatorcontrib><description>Detecting performance bottlenecks is critical to fix software performance issues. A great part of performance bottlenecks are related to resource usages, which can be affected by configurations. To detect configuration-related performance bottlenecks, the existing works either use learning methods to model the relationships between performance and configurations, or use profiling methods to monitor the execution time. The learning methods are time-consuming when analyzing software with large amounts of configurations, while the profiling methods can incur excessive overheads. In this paper, we conduct empirical studies on configurations, performance and resources. We find that 1) 49% performance issues can be improved or fixed by configurations; 2) 71% configurations affect the performance by tuning resource usage in a simple way; and 3) four types of resources contribute the main causes of performance issues. Inspired by these findings, we design PBHunter, a resource-guided instrumentation tool to detect configuration-related performance bottlenecks. PBHunter ranks configurations by resource usage and selects the ones that heavily affect resource usages. Guided by selected configurations, PBHunter applies the code instrumentation technique in resource-related code snippets. The evaluation shows PBHunter can effectively (36/50) expose the culprits of performance issues with minor overheads (5.1% on average).</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2936599</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computer bugs ; Configuration management ; Empirical analysis ; Instruments ; Learning ; Learning systems ; resource management ; Software ; Software performance ; software tools ; Teaching methods ; Testing</subject><ispartof>IEEE access, 2019, Vol.7, p.117839-117849</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-5d7e99140dac31ad0f1ff8e1405f448108dae19921c4a36974a390c3593310783</cites><orcidid>0000-0002-2533-4547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8808844$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Li, Shanshan</creatorcontrib><creatorcontrib>Jia, Zhouyang</creatorcontrib><creatorcontrib>Li, Yunfeng</creatorcontrib><creatorcontrib>Liao, Xiangke</creatorcontrib><creatorcontrib>Xu, Erci</creatorcontrib><creatorcontrib>Liu, Xiaodong</creatorcontrib><creatorcontrib>He, Haochen</creatorcontrib><creatorcontrib>Gao, Long</creatorcontrib><title>Detecting Performance Bottlenecks Guided by Resource Usage</title><title>IEEE access</title><addtitle>Access</addtitle><description>Detecting performance bottlenecks is critical to fix software performance issues. A great part of performance bottlenecks are related to resource usages, which can be affected by configurations. To detect configuration-related performance bottlenecks, the existing works either use learning methods to model the relationships between performance and configurations, or use profiling methods to monitor the execution time. The learning methods are time-consuming when analyzing software with large amounts of configurations, while the profiling methods can incur excessive overheads. In this paper, we conduct empirical studies on configurations, performance and resources. We find that 1) 49% performance issues can be improved or fixed by configurations; 2) 71% configurations affect the performance by tuning resource usage in a simple way; and 3) four types of resources contribute the main causes of performance issues. Inspired by these findings, we design PBHunter, a resource-guided instrumentation tool to detect configuration-related performance bottlenecks. PBHunter ranks configurations by resource usage and selects the ones that heavily affect resource usages. Guided by selected configurations, PBHunter applies the code instrumentation technique in resource-related code snippets. The evaluation shows PBHunter can effectively (36/50) expose the culprits of performance issues with minor overheads (5.1% on average).</description><subject>Computer bugs</subject><subject>Configuration management</subject><subject>Empirical analysis</subject><subject>Instruments</subject><subject>Learning</subject><subject>Learning systems</subject><subject>resource management</subject><subject>Software</subject><subject>Software performance</subject><subject>software tools</subject><subject>Teaching methods</subject><subject>Testing</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMFOAjEQbYwmEuQLuGziebHdtrutN1wRSUg0Iuem252SRdhiuxz4e4tLjHOYmbzOezN9CI0JnhCC5cO0LGer1STDRE4ySXMu5RUaZCSXKeU0v_7X36JRCFscQ0SIFwP0-AwdmK5pN8k7eOv8XrcGkifXdTtowXyFZH5saqiT6pR8QHBHH5_XQW_gDt1YvQswutQhWr_MPsvXdPk2X5TTZWooF13K6wKkJAzX2lCia2yJtQIiwC1jgmBRayBSZsQwTXNZxCxx5EpKCS4EHaJFr1s7vVUH3-y1PymnG_ULOL9R2neN2YGymbAM4toCClYVTFBBqKgrYqmoTFFFrfte6-Dd9xFCp7bxR208X2WM8xzznOZxivZTxrsQPNi_rQSrs-eq91ydPVcXzyNr3LMaAPhjCIGFYIz-AJSMero</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Li, Shanshan</creator><creator>Jia, Zhouyang</creator><creator>Li, Yunfeng</creator><creator>Liao, Xiangke</creator><creator>Xu, Erci</creator><creator>Liu, Xiaodong</creator><creator>He, Haochen</creator><creator>Gao, Long</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2533-4547</orcidid></search><sort><creationdate>2019</creationdate><title>Detecting Performance Bottlenecks Guided by Resource Usage</title><author>Li, Shanshan ; Jia, Zhouyang ; Li, Yunfeng ; Liao, Xiangke ; Xu, Erci ; Liu, Xiaodong ; He, Haochen ; Gao, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-5d7e99140dac31ad0f1ff8e1405f448108dae19921c4a36974a390c3593310783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer bugs</topic><topic>Configuration management</topic><topic>Empirical analysis</topic><topic>Instruments</topic><topic>Learning</topic><topic>Learning systems</topic><topic>resource management</topic><topic>Software</topic><topic>Software performance</topic><topic>software tools</topic><topic>Teaching methods</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shanshan</creatorcontrib><creatorcontrib>Jia, Zhouyang</creatorcontrib><creatorcontrib>Li, Yunfeng</creatorcontrib><creatorcontrib>Liao, Xiangke</creatorcontrib><creatorcontrib>Xu, Erci</creatorcontrib><creatorcontrib>Liu, Xiaodong</creatorcontrib><creatorcontrib>He, Haochen</creatorcontrib><creatorcontrib>Gao, Long</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shanshan</au><au>Jia, Zhouyang</au><au>Li, Yunfeng</au><au>Liao, Xiangke</au><au>Xu, Erci</au><au>Liu, Xiaodong</au><au>He, Haochen</au><au>Gao, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Performance Bottlenecks Guided by Resource Usage</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>117839</spage><epage>117849</epage><pages>117839-117849</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Detecting performance bottlenecks is critical to fix software performance issues. A great part of performance bottlenecks are related to resource usages, which can be affected by configurations. To detect configuration-related performance bottlenecks, the existing works either use learning methods to model the relationships between performance and configurations, or use profiling methods to monitor the execution time. The learning methods are time-consuming when analyzing software with large amounts of configurations, while the profiling methods can incur excessive overheads. In this paper, we conduct empirical studies on configurations, performance and resources. We find that 1) 49% performance issues can be improved or fixed by configurations; 2) 71% configurations affect the performance by tuning resource usage in a simple way; and 3) four types of resources contribute the main causes of performance issues. Inspired by these findings, we design PBHunter, a resource-guided instrumentation tool to detect configuration-related performance bottlenecks. PBHunter ranks configurations by resource usage and selects the ones that heavily affect resource usages. Guided by selected configurations, PBHunter applies the code instrumentation technique in resource-related code snippets. The evaluation shows PBHunter can effectively (36/50) expose the culprits of performance issues with minor overheads (5.1% on average).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2936599</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2533-4547</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.117839-117849 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8808844 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Computer bugs Configuration management Empirical analysis Instruments Learning Learning systems resource management Software Software performance software tools Teaching methods Testing |
title | Detecting Performance Bottlenecks Guided by Resource Usage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Performance%20Bottlenecks%20Guided%20by%20Resource%20Usage&rft.jtitle=IEEE%20access&rft.au=Li,%20Shanshan&rft.date=2019&rft.volume=7&rft.spage=117839&rft.epage=117849&rft.pages=117839-117849&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2936599&rft_dat=%3Cproquest_ieee_%3E2455605636%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455605636&rft_id=info:pmid/&rft_ieee_id=8808844&rft_doaj_id=oai_doaj_org_article_f28f4e3587e74b74838138db1f38bc7b&rfr_iscdi=true |