RSATree: Distribution-Aware Data Representation of Large-Scale Tabular Datasets for Flexible Visual Query
Analysts commonly investigate the data distributions derived from statistical aggregations of data that are represented by charts, such as histograms and binned scatterplots, to visualize and analyze a large-scale dataset. Aggregate queries are implicitly executed through such a process. Datasets ar...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2020-01, Vol.26 (1), p.1161-1171 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1171 |
---|---|
container_issue | 1 |
container_start_page | 1161 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 26 |
creator | Mei, Honghui Chen, Wei Wei, Yating Hu, Yuanzhe Zhou, Shuyue Lin, Bingru Zhao, Ying Xia, Jiazhi |
description | Analysts commonly investigate the data distributions derived from statistical aggregations of data that are represented by charts, such as histograms and binned scatterplots, to visualize and analyze a large-scale dataset. Aggregate queries are implicitly executed through such a process. Datasets are constantly extremely large; thus, the response time should be accelerated by calculating predefined data cubes. However, the queries are limited to the predefined binning schema of preprocessed data cubes. Such limitation hinders analysts' flexible adjustment of visual specifications to investigate the implicit patterns in the data effectively. Particularly, RSATree enables arbitrary queries and flexible binning strategies by leveraging three schemes, namely, an R-tree-based space partitioning scheme to catch the data distribution, a locality-sensitive hashing technique to achieve locality-preserving random access to data items, and a summed area table scheme to support interactive query of aggregated values with a linear computational complexity. This study presents and implements a web-based visual query system that supports visual specification, query, and exploration of large-scale tabular data with user-adjustable granularities. We demonstrate the efficiency and utility of our approach by performing various experiments on real-world datasets and analyzing time and space complexity. |
doi_str_mv | 10.1109/TVCG.2019.2934800 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8807303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8807303</ieee_id><sourcerecordid>2280545711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-7ec4daa8ada4cb6a8c8e388bd2f06169672d736886983a5049da608d2862ad843</originalsourceid><addsrcrecordid>eNpdkUtrG0EQhIeQEDt2foAxmIFcclm556F55CbkRwICY1vxdejd7TVjVlp5ZpfY_z6rSPYhpy6or5qmi7ETARMhwJ8vH-bXEwnCT6RX2gF8YIfCa1HAFMzHUYO1hTTSHLAvOT8BCK2d_8wO1CgUSHnI4t39bJmIfvCLmPsUy6GP3bqY_cFE_AJ75He0SZRp3ePW4V3DF5geqbivsCW-xHJoMf1DM_WZN13iVy29xHJ0H2IesOW3A6XXY_apwTbT1_08Yr-vLpfzn8Xi5vrXfLYoKqV9X1iqdI3osEZdlQZd5Ug5V9ayASOMN1bWVhnnjHcKp6B9jQZcLZ2RWDutjtj33d5N6p4Hyn1YxVxR2-KauiEHKR1M9dQKMaLf_kOfuiGtx-uCVMJaaaU0IyV2VJW6nBM1YZPiCtNrEBC2PYRtD2HbQ9j3MGbO9puHckX1e-Lt8SNwugMiEb3bzoFVoNRfIDeLAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317727226</pqid></control><display><type>article</type><title>RSATree: Distribution-Aware Data Representation of Large-Scale Tabular Datasets for Flexible Visual Query</title><source>IEEE Electronic Library (IEL)</source><creator>Mei, Honghui ; Chen, Wei ; Wei, Yating ; Hu, Yuanzhe ; Zhou, Shuyue ; Lin, Bingru ; Zhao, Ying ; Xia, Jiazhi</creator><creatorcontrib>Mei, Honghui ; Chen, Wei ; Wei, Yating ; Hu, Yuanzhe ; Zhou, Shuyue ; Lin, Bingru ; Zhao, Ying ; Xia, Jiazhi</creatorcontrib><description>Analysts commonly investigate the data distributions derived from statistical aggregations of data that are represented by charts, such as histograms and binned scatterplots, to visualize and analyze a large-scale dataset. Aggregate queries are implicitly executed through such a process. Datasets are constantly extremely large; thus, the response time should be accelerated by calculating predefined data cubes. However, the queries are limited to the predefined binning schema of preprocessed data cubes. Such limitation hinders analysts' flexible adjustment of visual specifications to investigate the implicit patterns in the data effectively. Particularly, RSATree enables arbitrary queries and flexible binning strategies by leveraging three schemes, namely, an R-tree-based space partitioning scheme to catch the data distribution, a locality-sensitive hashing technique to achieve locality-preserving random access to data items, and a summed area table scheme to support interactive query of aggregated values with a linear computational complexity. This study presents and implements a web-based visual query system that supports visual specification, query, and exploration of large-scale tabular data with user-adjustable granularities. We demonstrate the efficiency and utility of our approach by performing various experiments on real-world datasets and analyzing time and space complexity.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2019.2934800</identifier><identifier>PMID: 31443022</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aggregate query ; Aggregates ; Complexity ; Cubes ; Data visualization ; Datasets ; hashing ; Histograms ; large-scale data visualization ; Queries ; R-tree ; Random access ; Response time (computers) ; Social networking (online) ; Specifications ; summed area table ; Tables (data) ; Time factors ; Visual databases ; visual query ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2020-01, Vol.26 (1), p.1161-1171</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-7ec4daa8ada4cb6a8c8e388bd2f06169672d736886983a5049da608d2862ad843</citedby><cites>FETCH-LOGICAL-c349t-7ec4daa8ada4cb6a8c8e388bd2f06169672d736886983a5049da608d2862ad843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8807303$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8807303$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31443022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mei, Honghui</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Wei, Yating</creatorcontrib><creatorcontrib>Hu, Yuanzhe</creatorcontrib><creatorcontrib>Zhou, Shuyue</creatorcontrib><creatorcontrib>Lin, Bingru</creatorcontrib><creatorcontrib>Zhao, Ying</creatorcontrib><creatorcontrib>Xia, Jiazhi</creatorcontrib><title>RSATree: Distribution-Aware Data Representation of Large-Scale Tabular Datasets for Flexible Visual Query</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Analysts commonly investigate the data distributions derived from statistical aggregations of data that are represented by charts, such as histograms and binned scatterplots, to visualize and analyze a large-scale dataset. Aggregate queries are implicitly executed through such a process. Datasets are constantly extremely large; thus, the response time should be accelerated by calculating predefined data cubes. However, the queries are limited to the predefined binning schema of preprocessed data cubes. Such limitation hinders analysts' flexible adjustment of visual specifications to investigate the implicit patterns in the data effectively. Particularly, RSATree enables arbitrary queries and flexible binning strategies by leveraging three schemes, namely, an R-tree-based space partitioning scheme to catch the data distribution, a locality-sensitive hashing technique to achieve locality-preserving random access to data items, and a summed area table scheme to support interactive query of aggregated values with a linear computational complexity. This study presents and implements a web-based visual query system that supports visual specification, query, and exploration of large-scale tabular data with user-adjustable granularities. We demonstrate the efficiency and utility of our approach by performing various experiments on real-world datasets and analyzing time and space complexity.</description><subject>Aggregate query</subject><subject>Aggregates</subject><subject>Complexity</subject><subject>Cubes</subject><subject>Data visualization</subject><subject>Datasets</subject><subject>hashing</subject><subject>Histograms</subject><subject>large-scale data visualization</subject><subject>Queries</subject><subject>R-tree</subject><subject>Random access</subject><subject>Response time (computers)</subject><subject>Social networking (online)</subject><subject>Specifications</subject><subject>summed area table</subject><subject>Tables (data)</subject><subject>Time factors</subject><subject>Visual databases</subject><subject>visual query</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUtrG0EQhIeQEDt2foAxmIFcclm556F55CbkRwICY1vxdejd7TVjVlp5ZpfY_z6rSPYhpy6or5qmi7ETARMhwJ8vH-bXEwnCT6RX2gF8YIfCa1HAFMzHUYO1hTTSHLAvOT8BCK2d_8wO1CgUSHnI4t39bJmIfvCLmPsUy6GP3bqY_cFE_AJ75He0SZRp3ePW4V3DF5geqbivsCW-xHJoMf1DM_WZN13iVy29xHJ0H2IesOW3A6XXY_apwTbT1_08Yr-vLpfzn8Xi5vrXfLYoKqV9X1iqdI3osEZdlQZd5Ug5V9ayASOMN1bWVhnnjHcKp6B9jQZcLZ2RWDutjtj33d5N6p4Hyn1YxVxR2-KauiEHKR1M9dQKMaLf_kOfuiGtx-uCVMJaaaU0IyV2VJW6nBM1YZPiCtNrEBC2PYRtD2HbQ9j3MGbO9puHckX1e-Lt8SNwugMiEb3bzoFVoNRfIDeLAg</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Mei, Honghui</creator><creator>Chen, Wei</creator><creator>Wei, Yating</creator><creator>Hu, Yuanzhe</creator><creator>Zhou, Shuyue</creator><creator>Lin, Bingru</creator><creator>Zhao, Ying</creator><creator>Xia, Jiazhi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>202001</creationdate><title>RSATree: Distribution-Aware Data Representation of Large-Scale Tabular Datasets for Flexible Visual Query</title><author>Mei, Honghui ; Chen, Wei ; Wei, Yating ; Hu, Yuanzhe ; Zhou, Shuyue ; Lin, Bingru ; Zhao, Ying ; Xia, Jiazhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-7ec4daa8ada4cb6a8c8e388bd2f06169672d736886983a5049da608d2862ad843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregate query</topic><topic>Aggregates</topic><topic>Complexity</topic><topic>Cubes</topic><topic>Data visualization</topic><topic>Datasets</topic><topic>hashing</topic><topic>Histograms</topic><topic>large-scale data visualization</topic><topic>Queries</topic><topic>R-tree</topic><topic>Random access</topic><topic>Response time (computers)</topic><topic>Social networking (online)</topic><topic>Specifications</topic><topic>summed area table</topic><topic>Tables (data)</topic><topic>Time factors</topic><topic>Visual databases</topic><topic>visual query</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Honghui</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Wei, Yating</creatorcontrib><creatorcontrib>Hu, Yuanzhe</creatorcontrib><creatorcontrib>Zhou, Shuyue</creatorcontrib><creatorcontrib>Lin, Bingru</creatorcontrib><creatorcontrib>Zhao, Ying</creatorcontrib><creatorcontrib>Xia, Jiazhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mei, Honghui</au><au>Chen, Wei</au><au>Wei, Yating</au><au>Hu, Yuanzhe</au><au>Zhou, Shuyue</au><au>Lin, Bingru</au><au>Zhao, Ying</au><au>Xia, Jiazhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RSATree: Distribution-Aware Data Representation of Large-Scale Tabular Datasets for Flexible Visual Query</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2020-01</date><risdate>2020</risdate><volume>26</volume><issue>1</issue><spage>1161</spage><epage>1171</epage><pages>1161-1171</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Analysts commonly investigate the data distributions derived from statistical aggregations of data that are represented by charts, such as histograms and binned scatterplots, to visualize and analyze a large-scale dataset. Aggregate queries are implicitly executed through such a process. Datasets are constantly extremely large; thus, the response time should be accelerated by calculating predefined data cubes. However, the queries are limited to the predefined binning schema of preprocessed data cubes. Such limitation hinders analysts' flexible adjustment of visual specifications to investigate the implicit patterns in the data effectively. Particularly, RSATree enables arbitrary queries and flexible binning strategies by leveraging three schemes, namely, an R-tree-based space partitioning scheme to catch the data distribution, a locality-sensitive hashing technique to achieve locality-preserving random access to data items, and a summed area table scheme to support interactive query of aggregated values with a linear computational complexity. This study presents and implements a web-based visual query system that supports visual specification, query, and exploration of large-scale tabular data with user-adjustable granularities. We demonstrate the efficiency and utility of our approach by performing various experiments on real-world datasets and analyzing time and space complexity.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31443022</pmid><doi>10.1109/TVCG.2019.2934800</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2020-01, Vol.26 (1), p.1161-1171 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_ieee_primary_8807303 |
source | IEEE Electronic Library (IEL) |
subjects | Aggregate query Aggregates Complexity Cubes Data visualization Datasets hashing Histograms large-scale data visualization Queries R-tree Random access Response time (computers) Social networking (online) Specifications summed area table Tables (data) Time factors Visual databases visual query Visualization |
title | RSATree: Distribution-Aware Data Representation of Large-Scale Tabular Datasets for Flexible Visual Query |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RSATree:%20Distribution-Aware%20Data%20Representation%20of%20Large-Scale%20Tabular%20Datasets%20for%20Flexible%20Visual%20Query&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Mei,%20Honghui&rft.date=2020-01&rft.volume=26&rft.issue=1&rft.spage=1161&rft.epage=1171&rft.pages=1161-1171&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2019.2934800&rft_dat=%3Cproquest_RIE%3E2280545711%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317727226&rft_id=info:pmid/31443022&rft_ieee_id=8807303&rfr_iscdi=true |