Performance Prediction Model Based on Multi-Task Learning and Co-Evolutionary Strategy for Ground Source Heat Pump System
In order to effectively predict the performance of ground source heat pump system, a performance prediction method is proposed in this paper. Based on the basic model of forward neural network, the algorithm predicts the performance data of ground source heat pump system by inputting the time series...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.117925-117933 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117933 |
---|---|
container_issue | |
container_start_page | 117925 |
container_title | IEEE access |
container_volume | 7 |
creator | Zhuang, Zhaoyi Wei, Chen Li, Bing Xu, Peng Guo, Yifei Ren, Jiachang |
description | In order to effectively predict the performance of ground source heat pump system, a performance prediction method is proposed in this paper. Based on the basic model of forward neural network, the algorithm predicts the performance data of ground source heat pump system by inputting the time series of system performance and 12 variables including 7 drilling parameters, 2 u-pipe parameters, 2 ground parameters and 1 circulating liquid parameter. The training of the model is divided into three subtasks by the strategy of multi-task learning and co-evolution, where CMA-ES is used as the evolutionary algorithm of the subtask. The experimental results show that the RMSE of the predicted results obtained by the proposed algorithm is less than 0.2, which verifies the effectiveness of the method. At the same time, this algorithm fully considers various influencing factors and has good versatility, which can be used as a reference for the design of ground source heat pump system. |
doi_str_mv | 10.1109/ACCESS.2019.2936508 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8807178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8807178</ieee_id><doaj_id>oai_doaj_org_article_6a46d8d46c3b424ab2b344567cde73fc</doaj_id><sourcerecordid>2455634350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c2ee4deaac61ba29c07ac3b38506f38aac30465638a283521538c7e4feb908383</originalsourceid><addsrcrecordid>eNpNUU1r3DAUNKWFhjS_IBdBz97K-rJ8TM02CWzpgtOzeJaeF2-91laSC_vvq61DqC56GmbmjZiiuK_opqpo8-Whbbddt2G0ajas4UpS_a64YZVqSi65ev_f_LG4i_FI89EZkvVNcdljGHw4wWyR7AO60abRz-S7dziRrxDRketzmdJYvkD8RXYIYR7nA4HZkdaX2z9-Wq4aCBfSpQAJDxeSPclj8EvmdH4J2fwJIZH9cjqT7hITnj4VHwaYIt693rfFz2_bl_ap3P14fG4fdqUVVKfSMkThEMCqqgfWWFqD5T3XkqqB64xzKpRUeWSaS1ZJrm2NYsC-oZprfls8r77Ow9Gcw3jKQY2H0fwDfDgYCGm0ExoFQjnthMoLBBPQs54LIVVtHdZ8sNnr8-p1Dv73gjGZY_7cnOMbJmQOIbikmcVXlg0-xoDD29aKmmtlZq3MXCszr5Vl1f2qGhHxTaE1rata87_nrZKr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455634350</pqid></control><display><type>article</type><title>Performance Prediction Model Based on Multi-Task Learning and Co-Evolutionary Strategy for Ground Source Heat Pump System</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhuang, Zhaoyi ; Wei, Chen ; Li, Bing ; Xu, Peng ; Guo, Yifei ; Ren, Jiachang</creator><creatorcontrib>Zhuang, Zhaoyi ; Wei, Chen ; Li, Bing ; Xu, Peng ; Guo, Yifei ; Ren, Jiachang</creatorcontrib><description>In order to effectively predict the performance of ground source heat pump system, a performance prediction method is proposed in this paper. Based on the basic model of forward neural network, the algorithm predicts the performance data of ground source heat pump system by inputting the time series of system performance and 12 variables including 7 drilling parameters, 2 u-pipe parameters, 2 ground parameters and 1 circulating liquid parameter. The training of the model is divided into three subtasks by the strategy of multi-task learning and co-evolution, where CMA-ES is used as the evolutionary algorithm of the subtask. The experimental results show that the RMSE of the predicted results obtained by the proposed algorithm is less than 0.2, which verifies the effectiveness of the method. At the same time, this algorithm fully considers various influencing factors and has good versatility, which can be used as a reference for the design of ground source heat pump system.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2936508</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; covariance matrix adaptation evolution strategy ; data mining ; Data models ; Drill pipe ; Evolutionary algorithms ; Ground source heat pump system ; Heat pumps ; Heat recovery systems ; Machine learning ; Mathematical models ; multi-task learning ; Neural networks ; Neurons ; Parameters ; Performance prediction ; prediction model ; Prediction models ; Predictive models ; System performance ; Task analysis ; Thermal conductivity</subject><ispartof>IEEE access, 2019, Vol.7, p.117925-117933</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c2ee4deaac61ba29c07ac3b38506f38aac30465638a283521538c7e4feb908383</citedby><cites>FETCH-LOGICAL-c408t-c2ee4deaac61ba29c07ac3b38506f38aac30465638a283521538c7e4feb908383</cites><orcidid>0000-0002-7807-0207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8807178$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhuang, Zhaoyi</creatorcontrib><creatorcontrib>Wei, Chen</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Guo, Yifei</creatorcontrib><creatorcontrib>Ren, Jiachang</creatorcontrib><title>Performance Prediction Model Based on Multi-Task Learning and Co-Evolutionary Strategy for Ground Source Heat Pump System</title><title>IEEE access</title><addtitle>Access</addtitle><description>In order to effectively predict the performance of ground source heat pump system, a performance prediction method is proposed in this paper. Based on the basic model of forward neural network, the algorithm predicts the performance data of ground source heat pump system by inputting the time series of system performance and 12 variables including 7 drilling parameters, 2 u-pipe parameters, 2 ground parameters and 1 circulating liquid parameter. The training of the model is divided into three subtasks by the strategy of multi-task learning and co-evolution, where CMA-ES is used as the evolutionary algorithm of the subtask. The experimental results show that the RMSE of the predicted results obtained by the proposed algorithm is less than 0.2, which verifies the effectiveness of the method. At the same time, this algorithm fully considers various influencing factors and has good versatility, which can be used as a reference for the design of ground source heat pump system.</description><subject>Algorithms</subject><subject>covariance matrix adaptation evolution strategy</subject><subject>data mining</subject><subject>Data models</subject><subject>Drill pipe</subject><subject>Evolutionary algorithms</subject><subject>Ground source heat pump system</subject><subject>Heat pumps</subject><subject>Heat recovery systems</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>multi-task learning</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Parameters</subject><subject>Performance prediction</subject><subject>prediction model</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>System performance</subject><subject>Task analysis</subject><subject>Thermal conductivity</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAUNKWFhjS_IBdBz97K-rJ8TM02CWzpgtOzeJaeF2-91laSC_vvq61DqC56GmbmjZiiuK_opqpo8-Whbbddt2G0ajas4UpS_a64YZVqSi65ev_f_LG4i_FI89EZkvVNcdljGHw4wWyR7AO60abRz-S7dziRrxDRketzmdJYvkD8RXYIYR7nA4HZkdaX2z9-Wq4aCBfSpQAJDxeSPclj8EvmdH4J2fwJIZH9cjqT7hITnj4VHwaYIt693rfFz2_bl_ap3P14fG4fdqUVVKfSMkThEMCqqgfWWFqD5T3XkqqB64xzKpRUeWSaS1ZJrm2NYsC-oZprfls8r77Ow9Gcw3jKQY2H0fwDfDgYCGm0ExoFQjnthMoLBBPQs54LIVVtHdZ8sNnr8-p1Dv73gjGZY_7cnOMbJmQOIbikmcVXlg0-xoDD29aKmmtlZq3MXCszr5Vl1f2qGhHxTaE1rata87_nrZKr</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zhuang, Zhaoyi</creator><creator>Wei, Chen</creator><creator>Li, Bing</creator><creator>Xu, Peng</creator><creator>Guo, Yifei</creator><creator>Ren, Jiachang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7807-0207</orcidid></search><sort><creationdate>2019</creationdate><title>Performance Prediction Model Based on Multi-Task Learning and Co-Evolutionary Strategy for Ground Source Heat Pump System</title><author>Zhuang, Zhaoyi ; Wei, Chen ; Li, Bing ; Xu, Peng ; Guo, Yifei ; Ren, Jiachang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c2ee4deaac61ba29c07ac3b38506f38aac30465638a283521538c7e4feb908383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>covariance matrix adaptation evolution strategy</topic><topic>data mining</topic><topic>Data models</topic><topic>Drill pipe</topic><topic>Evolutionary algorithms</topic><topic>Ground source heat pump system</topic><topic>Heat pumps</topic><topic>Heat recovery systems</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>multi-task learning</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Parameters</topic><topic>Performance prediction</topic><topic>prediction model</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>System performance</topic><topic>Task analysis</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuang, Zhaoyi</creatorcontrib><creatorcontrib>Wei, Chen</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Guo, Yifei</creatorcontrib><creatorcontrib>Ren, Jiachang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuang, Zhaoyi</au><au>Wei, Chen</au><au>Li, Bing</au><au>Xu, Peng</au><au>Guo, Yifei</au><au>Ren, Jiachang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Prediction Model Based on Multi-Task Learning and Co-Evolutionary Strategy for Ground Source Heat Pump System</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>117925</spage><epage>117933</epage><pages>117925-117933</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In order to effectively predict the performance of ground source heat pump system, a performance prediction method is proposed in this paper. Based on the basic model of forward neural network, the algorithm predicts the performance data of ground source heat pump system by inputting the time series of system performance and 12 variables including 7 drilling parameters, 2 u-pipe parameters, 2 ground parameters and 1 circulating liquid parameter. The training of the model is divided into three subtasks by the strategy of multi-task learning and co-evolution, where CMA-ES is used as the evolutionary algorithm of the subtask. The experimental results show that the RMSE of the predicted results obtained by the proposed algorithm is less than 0.2, which verifies the effectiveness of the method. At the same time, this algorithm fully considers various influencing factors and has good versatility, which can be used as a reference for the design of ground source heat pump system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2936508</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7807-0207</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.117925-117933 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8807178 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms covariance matrix adaptation evolution strategy data mining Data models Drill pipe Evolutionary algorithms Ground source heat pump system Heat pumps Heat recovery systems Machine learning Mathematical models multi-task learning Neural networks Neurons Parameters Performance prediction prediction model Prediction models Predictive models System performance Task analysis Thermal conductivity |
title | Performance Prediction Model Based on Multi-Task Learning and Co-Evolutionary Strategy for Ground Source Heat Pump System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Prediction%20Model%20Based%20on%20Multi-Task%20Learning%20and%20Co-Evolutionary%20Strategy%20for%20Ground%20Source%20Heat%20Pump%20System&rft.jtitle=IEEE%20access&rft.au=Zhuang,%20Zhaoyi&rft.date=2019&rft.volume=7&rft.spage=117925&rft.epage=117933&rft.pages=117925-117933&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2936508&rft_dat=%3Cproquest_ieee_%3E2455634350%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455634350&rft_id=info:pmid/&rft_ieee_id=8807178&rft_doaj_id=oai_doaj_org_article_6a46d8d46c3b424ab2b344567cde73fc&rfr_iscdi=true |