Performance Prediction Model Based on Multi-Task Learning and Co-Evolutionary Strategy for Ground Source Heat Pump System

In order to effectively predict the performance of ground source heat pump system, a performance prediction method is proposed in this paper. Based on the basic model of forward neural network, the algorithm predicts the performance data of ground source heat pump system by inputting the time series...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.117925-117933
Hauptverfasser: Zhuang, Zhaoyi, Wei, Chen, Li, Bing, Xu, Peng, Guo, Yifei, Ren, Jiachang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117933
container_issue
container_start_page 117925
container_title IEEE access
container_volume 7
creator Zhuang, Zhaoyi
Wei, Chen
Li, Bing
Xu, Peng
Guo, Yifei
Ren, Jiachang
description In order to effectively predict the performance of ground source heat pump system, a performance prediction method is proposed in this paper. Based on the basic model of forward neural network, the algorithm predicts the performance data of ground source heat pump system by inputting the time series of system performance and 12 variables including 7 drilling parameters, 2 u-pipe parameters, 2 ground parameters and 1 circulating liquid parameter. The training of the model is divided into three subtasks by the strategy of multi-task learning and co-evolution, where CMA-ES is used as the evolutionary algorithm of the subtask. The experimental results show that the RMSE of the predicted results obtained by the proposed algorithm is less than 0.2, which verifies the effectiveness of the method. At the same time, this algorithm fully considers various influencing factors and has good versatility, which can be used as a reference for the design of ground source heat pump system.
doi_str_mv 10.1109/ACCESS.2019.2936508
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8807178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8807178</ieee_id><doaj_id>oai_doaj_org_article_6a46d8d46c3b424ab2b344567cde73fc</doaj_id><sourcerecordid>2455634350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c2ee4deaac61ba29c07ac3b38506f38aac30465638a283521538c7e4feb908383</originalsourceid><addsrcrecordid>eNpNUU1r3DAUNKWFhjS_IBdBz97K-rJ8TM02CWzpgtOzeJaeF2-91laSC_vvq61DqC56GmbmjZiiuK_opqpo8-Whbbddt2G0ajas4UpS_a64YZVqSi65ev_f_LG4i_FI89EZkvVNcdljGHw4wWyR7AO60abRz-S7dziRrxDRketzmdJYvkD8RXYIYR7nA4HZkdaX2z9-Wq4aCBfSpQAJDxeSPclj8EvmdH4J2fwJIZH9cjqT7hITnj4VHwaYIt693rfFz2_bl_ap3P14fG4fdqUVVKfSMkThEMCqqgfWWFqD5T3XkqqB64xzKpRUeWSaS1ZJrm2NYsC-oZprfls8r77Ow9Gcw3jKQY2H0fwDfDgYCGm0ExoFQjnthMoLBBPQs54LIVVtHdZ8sNnr8-p1Dv73gjGZY_7cnOMbJmQOIbikmcVXlg0-xoDD29aKmmtlZq3MXCszr5Vl1f2qGhHxTaE1rata87_nrZKr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455634350</pqid></control><display><type>article</type><title>Performance Prediction Model Based on Multi-Task Learning and Co-Evolutionary Strategy for Ground Source Heat Pump System</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhuang, Zhaoyi ; Wei, Chen ; Li, Bing ; Xu, Peng ; Guo, Yifei ; Ren, Jiachang</creator><creatorcontrib>Zhuang, Zhaoyi ; Wei, Chen ; Li, Bing ; Xu, Peng ; Guo, Yifei ; Ren, Jiachang</creatorcontrib><description>In order to effectively predict the performance of ground source heat pump system, a performance prediction method is proposed in this paper. Based on the basic model of forward neural network, the algorithm predicts the performance data of ground source heat pump system by inputting the time series of system performance and 12 variables including 7 drilling parameters, 2 u-pipe parameters, 2 ground parameters and 1 circulating liquid parameter. The training of the model is divided into three subtasks by the strategy of multi-task learning and co-evolution, where CMA-ES is used as the evolutionary algorithm of the subtask. The experimental results show that the RMSE of the predicted results obtained by the proposed algorithm is less than 0.2, which verifies the effectiveness of the method. At the same time, this algorithm fully considers various influencing factors and has good versatility, which can be used as a reference for the design of ground source heat pump system.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2936508</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; covariance matrix adaptation evolution strategy ; data mining ; Data models ; Drill pipe ; Evolutionary algorithms ; Ground source heat pump system ; Heat pumps ; Heat recovery systems ; Machine learning ; Mathematical models ; multi-task learning ; Neural networks ; Neurons ; Parameters ; Performance prediction ; prediction model ; Prediction models ; Predictive models ; System performance ; Task analysis ; Thermal conductivity</subject><ispartof>IEEE access, 2019, Vol.7, p.117925-117933</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c2ee4deaac61ba29c07ac3b38506f38aac30465638a283521538c7e4feb908383</citedby><cites>FETCH-LOGICAL-c408t-c2ee4deaac61ba29c07ac3b38506f38aac30465638a283521538c7e4feb908383</cites><orcidid>0000-0002-7807-0207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8807178$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhuang, Zhaoyi</creatorcontrib><creatorcontrib>Wei, Chen</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Guo, Yifei</creatorcontrib><creatorcontrib>Ren, Jiachang</creatorcontrib><title>Performance Prediction Model Based on Multi-Task Learning and Co-Evolutionary Strategy for Ground Source Heat Pump System</title><title>IEEE access</title><addtitle>Access</addtitle><description>In order to effectively predict the performance of ground source heat pump system, a performance prediction method is proposed in this paper. Based on the basic model of forward neural network, the algorithm predicts the performance data of ground source heat pump system by inputting the time series of system performance and 12 variables including 7 drilling parameters, 2 u-pipe parameters, 2 ground parameters and 1 circulating liquid parameter. The training of the model is divided into three subtasks by the strategy of multi-task learning and co-evolution, where CMA-ES is used as the evolutionary algorithm of the subtask. The experimental results show that the RMSE of the predicted results obtained by the proposed algorithm is less than 0.2, which verifies the effectiveness of the method. At the same time, this algorithm fully considers various influencing factors and has good versatility, which can be used as a reference for the design of ground source heat pump system.</description><subject>Algorithms</subject><subject>covariance matrix adaptation evolution strategy</subject><subject>data mining</subject><subject>Data models</subject><subject>Drill pipe</subject><subject>Evolutionary algorithms</subject><subject>Ground source heat pump system</subject><subject>Heat pumps</subject><subject>Heat recovery systems</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>multi-task learning</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Parameters</subject><subject>Performance prediction</subject><subject>prediction model</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>System performance</subject><subject>Task analysis</subject><subject>Thermal conductivity</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAUNKWFhjS_IBdBz97K-rJ8TM02CWzpgtOzeJaeF2-91laSC_vvq61DqC56GmbmjZiiuK_opqpo8-Whbbddt2G0ajas4UpS_a64YZVqSi65ev_f_LG4i_FI89EZkvVNcdljGHw4wWyR7AO60abRz-S7dziRrxDRketzmdJYvkD8RXYIYR7nA4HZkdaX2z9-Wq4aCBfSpQAJDxeSPclj8EvmdH4J2fwJIZH9cjqT7hITnj4VHwaYIt693rfFz2_bl_ap3P14fG4fdqUVVKfSMkThEMCqqgfWWFqD5T3XkqqB64xzKpRUeWSaS1ZJrm2NYsC-oZprfls8r77Ow9Gcw3jKQY2H0fwDfDgYCGm0ExoFQjnthMoLBBPQs54LIVVtHdZ8sNnr8-p1Dv73gjGZY_7cnOMbJmQOIbikmcVXlg0-xoDD29aKmmtlZq3MXCszr5Vl1f2qGhHxTaE1rata87_nrZKr</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zhuang, Zhaoyi</creator><creator>Wei, Chen</creator><creator>Li, Bing</creator><creator>Xu, Peng</creator><creator>Guo, Yifei</creator><creator>Ren, Jiachang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7807-0207</orcidid></search><sort><creationdate>2019</creationdate><title>Performance Prediction Model Based on Multi-Task Learning and Co-Evolutionary Strategy for Ground Source Heat Pump System</title><author>Zhuang, Zhaoyi ; Wei, Chen ; Li, Bing ; Xu, Peng ; Guo, Yifei ; Ren, Jiachang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c2ee4deaac61ba29c07ac3b38506f38aac30465638a283521538c7e4feb908383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>covariance matrix adaptation evolution strategy</topic><topic>data mining</topic><topic>Data models</topic><topic>Drill pipe</topic><topic>Evolutionary algorithms</topic><topic>Ground source heat pump system</topic><topic>Heat pumps</topic><topic>Heat recovery systems</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>multi-task learning</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Parameters</topic><topic>Performance prediction</topic><topic>prediction model</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>System performance</topic><topic>Task analysis</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuang, Zhaoyi</creatorcontrib><creatorcontrib>Wei, Chen</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Guo, Yifei</creatorcontrib><creatorcontrib>Ren, Jiachang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuang, Zhaoyi</au><au>Wei, Chen</au><au>Li, Bing</au><au>Xu, Peng</au><au>Guo, Yifei</au><au>Ren, Jiachang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Prediction Model Based on Multi-Task Learning and Co-Evolutionary Strategy for Ground Source Heat Pump System</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>117925</spage><epage>117933</epage><pages>117925-117933</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In order to effectively predict the performance of ground source heat pump system, a performance prediction method is proposed in this paper. Based on the basic model of forward neural network, the algorithm predicts the performance data of ground source heat pump system by inputting the time series of system performance and 12 variables including 7 drilling parameters, 2 u-pipe parameters, 2 ground parameters and 1 circulating liquid parameter. The training of the model is divided into three subtasks by the strategy of multi-task learning and co-evolution, where CMA-ES is used as the evolutionary algorithm of the subtask. The experimental results show that the RMSE of the predicted results obtained by the proposed algorithm is less than 0.2, which verifies the effectiveness of the method. At the same time, this algorithm fully considers various influencing factors and has good versatility, which can be used as a reference for the design of ground source heat pump system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2936508</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7807-0207</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.117925-117933
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8807178
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
covariance matrix adaptation evolution strategy
data mining
Data models
Drill pipe
Evolutionary algorithms
Ground source heat pump system
Heat pumps
Heat recovery systems
Machine learning
Mathematical models
multi-task learning
Neural networks
Neurons
Parameters
Performance prediction
prediction model
Prediction models
Predictive models
System performance
Task analysis
Thermal conductivity
title Performance Prediction Model Based on Multi-Task Learning and Co-Evolutionary Strategy for Ground Source Heat Pump System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Prediction%20Model%20Based%20on%20Multi-Task%20Learning%20and%20Co-Evolutionary%20Strategy%20for%20Ground%20Source%20Heat%20Pump%20System&rft.jtitle=IEEE%20access&rft.au=Zhuang,%20Zhaoyi&rft.date=2019&rft.volume=7&rft.spage=117925&rft.epage=117933&rft.pages=117925-117933&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2936508&rft_dat=%3Cproquest_ieee_%3E2455634350%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455634350&rft_id=info:pmid/&rft_ieee_id=8807178&rft_doaj_id=oai_doaj_org_article_6a46d8d46c3b424ab2b344567cde73fc&rfr_iscdi=true