Observability Analysis of Aided INS With Heterogeneous Features of Points, Lines, and Planes
In this article, we perform a thorough observability analysis for linearized inertial navigation systems (INS) aided by exteroceptive range and/or bearing sensors (such as cameras, LiDAR, and sonars) with different geometric features (points, lines, planes, or their combinations). In particular, by...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2019-12, Vol.35 (6), p.1399-1418 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1418 |
---|---|
container_issue | 6 |
container_start_page | 1399 |
container_title | IEEE transactions on robotics |
container_volume | 35 |
creator | Yang, Yulin Huang, Guoquan |
description | In this article, we perform a thorough observability analysis for linearized inertial navigation systems (INS) aided by exteroceptive range and/or bearing sensors (such as cameras, LiDAR, and sonars) with different geometric features (points, lines, planes, or their combinations). In particular, by reviewing common representations of geometric features, we introduce two sets of unified feature representations, i.e., the quaternion and closest point (CP) parameterizations. While the observability of vision-aided INS (VINS) with point features has been extensively studied in the literature, we analytically show that the general aided INS with point features preserves the same observability property, i.e., four unobservable directions, corresponding to the global yaw and the global translation of the sensor platform. We further prove that there are at least five (or seven) unobservable directions for the linearized aided INS with a single line (plane) feature, and, for the first time, analytically derive the unobservable subspace for the case of multiple lines or planes. Building upon this analysis for homogeneous features, we examine the observability of the same system but with combinations of heterogeneous features, and show that, in general, the system preserves at least four unobservable directions, while if global measurements are available, as expected, the unobservable subspace will have lower dimensions. We validate our analysis in Monte-Carlo simulations using both EKF-based visual-inertial SLAM and visual-inertial odometry (VIO) with different geometric features. |
doi_str_mv | 10.1109/TRO.2019.2927835 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8799000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8799000</ieee_id><sourcerecordid>2322764931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2a2440bf4b16d5c2b41334564d5928b0db6c42a42de754c394be4b4e05bbd2ad3</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd3wUvAq5352TbHMZwbDDd04kUISfNVM2o7k1bYf2_nhqf3PTzvB9-D0DUlI0qJul8_L0eMUDViimU5lydoQJWgCRFpftp3KVnCicrP0UWMG0KYUIQP0PvSRgg_xvrKtzs8rk21iz7ipsRj78Dh-dMLfvPtJ55BC6H5gBqaLuIpmLYL8AeuGl-38Q4vfA19mNrhVWX6fonOSlNFuDrmEL1OH9aTWbJYPs4n40VSMEXbhBkmBLGlsDR1smBWUM6FTIWTiuWWOJsWghnBHGRSFFwJC8IKINJax4zjQ3R7uLsNzXcHsdWbpgv9K1EzzliWCsVpT5EDVYQmxgCl3gb_ZcJOU6L3DnXvUO8d6qPDfnJzmHgA-MfzTClCCP8FSWNsaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322764931</pqid></control><display><type>article</type><title>Observability Analysis of Aided INS With Heterogeneous Features of Points, Lines, and Planes</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Yulin ; Huang, Guoquan</creator><creatorcontrib>Yang, Yulin ; Huang, Guoquan</creatorcontrib><description>In this article, we perform a thorough observability analysis for linearized inertial navigation systems (INS) aided by exteroceptive range and/or bearing sensors (such as cameras, LiDAR, and sonars) with different geometric features (points, lines, planes, or their combinations). In particular, by reviewing common representations of geometric features, we introduce two sets of unified feature representations, i.e., the quaternion and closest point (CP) parameterizations. While the observability of vision-aided INS (VINS) with point features has been extensively studied in the literature, we analytically show that the general aided INS with point features preserves the same observability property, i.e., four unobservable directions, corresponding to the global yaw and the global translation of the sensor platform. We further prove that there are at least five (or seven) unobservable directions for the linearized aided INS with a single line (plane) feature, and, for the first time, analytically derive the unobservable subspace for the case of multiple lines or planes. Building upon this analysis for homogeneous features, we examine the observability of the same system but with combinations of heterogeneous features, and show that, in general, the system preserves at least four unobservable directions, while if global measurements are available, as expected, the unobservable subspace will have lower dimensions. We validate our analysis in Monte-Carlo simulations using both EKF-based visual-inertial SLAM and visual-inertial odometry (VIO) with different geometric features.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2019.2927835</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Extended Kalman filter ; Inertial navigation ; inertial navigation system ; Kalman filters ; Linearization ; Navigation systems ; Observability ; observability analysis ; Odometers ; Planes ; Quaternions ; Representations ; Simultaneous localization and mapping ; SLAM ; visual-inertial odometry ; Yaw</subject><ispartof>IEEE transactions on robotics, 2019-12, Vol.35 (6), p.1399-1418</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2a2440bf4b16d5c2b41334564d5928b0db6c42a42de754c394be4b4e05bbd2ad3</citedby><cites>FETCH-LOGICAL-c291t-2a2440bf4b16d5c2b41334564d5928b0db6c42a42de754c394be4b4e05bbd2ad3</cites><orcidid>0000-0001-9932-0685 ; 0000-0002-9675-9147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8799000$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8799000$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Yulin</creatorcontrib><creatorcontrib>Huang, Guoquan</creatorcontrib><title>Observability Analysis of Aided INS With Heterogeneous Features of Points, Lines, and Planes</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>In this article, we perform a thorough observability analysis for linearized inertial navigation systems (INS) aided by exteroceptive range and/or bearing sensors (such as cameras, LiDAR, and sonars) with different geometric features (points, lines, planes, or their combinations). In particular, by reviewing common representations of geometric features, we introduce two sets of unified feature representations, i.e., the quaternion and closest point (CP) parameterizations. While the observability of vision-aided INS (VINS) with point features has been extensively studied in the literature, we analytically show that the general aided INS with point features preserves the same observability property, i.e., four unobservable directions, corresponding to the global yaw and the global translation of the sensor platform. We further prove that there are at least five (or seven) unobservable directions for the linearized aided INS with a single line (plane) feature, and, for the first time, analytically derive the unobservable subspace for the case of multiple lines or planes. Building upon this analysis for homogeneous features, we examine the observability of the same system but with combinations of heterogeneous features, and show that, in general, the system preserves at least four unobservable directions, while if global measurements are available, as expected, the unobservable subspace will have lower dimensions. We validate our analysis in Monte-Carlo simulations using both EKF-based visual-inertial SLAM and visual-inertial odometry (VIO) with different geometric features.</description><subject>Extended Kalman filter</subject><subject>Inertial navigation</subject><subject>inertial navigation system</subject><subject>Kalman filters</subject><subject>Linearization</subject><subject>Navigation systems</subject><subject>Observability</subject><subject>observability analysis</subject><subject>Odometers</subject><subject>Planes</subject><subject>Quaternions</subject><subject>Representations</subject><subject>Simultaneous localization and mapping</subject><subject>SLAM</subject><subject>visual-inertial odometry</subject><subject>Yaw</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYhoMoOKd3wUvAq5352TbHMZwbDDd04kUISfNVM2o7k1bYf2_nhqf3PTzvB9-D0DUlI0qJul8_L0eMUDViimU5lydoQJWgCRFpftp3KVnCicrP0UWMG0KYUIQP0PvSRgg_xvrKtzs8rk21iz7ipsRj78Dh-dMLfvPtJ55BC6H5gBqaLuIpmLYL8AeuGl-38Q4vfA19mNrhVWX6fonOSlNFuDrmEL1OH9aTWbJYPs4n40VSMEXbhBkmBLGlsDR1smBWUM6FTIWTiuWWOJsWghnBHGRSFFwJC8IKINJax4zjQ3R7uLsNzXcHsdWbpgv9K1EzzliWCsVpT5EDVYQmxgCl3gb_ZcJOU6L3DnXvUO8d6qPDfnJzmHgA-MfzTClCCP8FSWNsaw</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Yang, Yulin</creator><creator>Huang, Guoquan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9932-0685</orcidid><orcidid>https://orcid.org/0000-0002-9675-9147</orcidid></search><sort><creationdate>201912</creationdate><title>Observability Analysis of Aided INS With Heterogeneous Features of Points, Lines, and Planes</title><author>Yang, Yulin ; Huang, Guoquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2a2440bf4b16d5c2b41334564d5928b0db6c42a42de754c394be4b4e05bbd2ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Extended Kalman filter</topic><topic>Inertial navigation</topic><topic>inertial navigation system</topic><topic>Kalman filters</topic><topic>Linearization</topic><topic>Navigation systems</topic><topic>Observability</topic><topic>observability analysis</topic><topic>Odometers</topic><topic>Planes</topic><topic>Quaternions</topic><topic>Representations</topic><topic>Simultaneous localization and mapping</topic><topic>SLAM</topic><topic>visual-inertial odometry</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yulin</creatorcontrib><creatorcontrib>Huang, Guoquan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Yulin</au><au>Huang, Guoquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observability Analysis of Aided INS With Heterogeneous Features of Points, Lines, and Planes</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2019-12</date><risdate>2019</risdate><volume>35</volume><issue>6</issue><spage>1399</spage><epage>1418</epage><pages>1399-1418</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>In this article, we perform a thorough observability analysis for linearized inertial navigation systems (INS) aided by exteroceptive range and/or bearing sensors (such as cameras, LiDAR, and sonars) with different geometric features (points, lines, planes, or their combinations). In particular, by reviewing common representations of geometric features, we introduce two sets of unified feature representations, i.e., the quaternion and closest point (CP) parameterizations. While the observability of vision-aided INS (VINS) with point features has been extensively studied in the literature, we analytically show that the general aided INS with point features preserves the same observability property, i.e., four unobservable directions, corresponding to the global yaw and the global translation of the sensor platform. We further prove that there are at least five (or seven) unobservable directions for the linearized aided INS with a single line (plane) feature, and, for the first time, analytically derive the unobservable subspace for the case of multiple lines or planes. Building upon this analysis for homogeneous features, we examine the observability of the same system but with combinations of heterogeneous features, and show that, in general, the system preserves at least four unobservable directions, while if global measurements are available, as expected, the unobservable subspace will have lower dimensions. We validate our analysis in Monte-Carlo simulations using both EKF-based visual-inertial SLAM and visual-inertial odometry (VIO) with different geometric features.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2019.2927835</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9932-0685</orcidid><orcidid>https://orcid.org/0000-0002-9675-9147</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2019-12, Vol.35 (6), p.1399-1418 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_ieee_primary_8799000 |
source | IEEE Electronic Library (IEL) |
subjects | Extended Kalman filter Inertial navigation inertial navigation system Kalman filters Linearization Navigation systems Observability observability analysis Odometers Planes Quaternions Representations Simultaneous localization and mapping SLAM visual-inertial odometry Yaw |
title | Observability Analysis of Aided INS With Heterogeneous Features of Points, Lines, and Planes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observability%20Analysis%20of%20Aided%20INS%20With%20Heterogeneous%20Features%20of%20Points,%20Lines,%20and%20Planes&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Yang,%20Yulin&rft.date=2019-12&rft.volume=35&rft.issue=6&rft.spage=1399&rft.epage=1418&rft.pages=1399-1418&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2019.2927835&rft_dat=%3Cproquest_RIE%3E2322764931%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322764931&rft_id=info:pmid/&rft_ieee_id=8799000&rfr_iscdi=true |