Observability Analysis of Aided INS With Heterogeneous Features of Points, Lines, and Planes

In this article, we perform a thorough observability analysis for linearized inertial navigation systems (INS) aided by exteroceptive range and/or bearing sensors (such as cameras, LiDAR, and sonars) with different geometric features (points, lines, planes, or their combinations). In particular, by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2019-12, Vol.35 (6), p.1399-1418
Hauptverfasser: Yang, Yulin, Huang, Guoquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1418
container_issue 6
container_start_page 1399
container_title IEEE transactions on robotics
container_volume 35
creator Yang, Yulin
Huang, Guoquan
description In this article, we perform a thorough observability analysis for linearized inertial navigation systems (INS) aided by exteroceptive range and/or bearing sensors (such as cameras, LiDAR, and sonars) with different geometric features (points, lines, planes, or their combinations). In particular, by reviewing common representations of geometric features, we introduce two sets of unified feature representations, i.e., the quaternion and closest point (CP) parameterizations. While the observability of vision-aided INS (VINS) with point features has been extensively studied in the literature, we analytically show that the general aided INS with point features preserves the same observability property, i.e., four unobservable directions, corresponding to the global yaw and the global translation of the sensor platform. We further prove that there are at least five (or seven) unobservable directions for the linearized aided INS with a single line (plane) feature, and, for the first time, analytically derive the unobservable subspace for the case of multiple lines or planes. Building upon this analysis for homogeneous features, we examine the observability of the same system but with combinations of heterogeneous features, and show that, in general, the system preserves at least four unobservable directions, while if global measurements are available, as expected, the unobservable subspace will have lower dimensions. We validate our analysis in Monte-Carlo simulations using both EKF-based visual-inertial SLAM and visual-inertial odometry (VIO) with different geometric features.
doi_str_mv 10.1109/TRO.2019.2927835
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8799000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8799000</ieee_id><sourcerecordid>2322764931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2a2440bf4b16d5c2b41334564d5928b0db6c42a42de754c394be4b4e05bbd2ad3</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd3wUvAq5352TbHMZwbDDd04kUISfNVM2o7k1bYf2_nhqf3PTzvB9-D0DUlI0qJul8_L0eMUDViimU5lydoQJWgCRFpftp3KVnCicrP0UWMG0KYUIQP0PvSRgg_xvrKtzs8rk21iz7ipsRj78Dh-dMLfvPtJ55BC6H5gBqaLuIpmLYL8AeuGl-38Q4vfA19mNrhVWX6fonOSlNFuDrmEL1OH9aTWbJYPs4n40VSMEXbhBkmBLGlsDR1smBWUM6FTIWTiuWWOJsWghnBHGRSFFwJC8IKINJax4zjQ3R7uLsNzXcHsdWbpgv9K1EzzliWCsVpT5EDVYQmxgCl3gb_ZcJOU6L3DnXvUO8d6qPDfnJzmHgA-MfzTClCCP8FSWNsaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322764931</pqid></control><display><type>article</type><title>Observability Analysis of Aided INS With Heterogeneous Features of Points, Lines, and Planes</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Yulin ; Huang, Guoquan</creator><creatorcontrib>Yang, Yulin ; Huang, Guoquan</creatorcontrib><description>In this article, we perform a thorough observability analysis for linearized inertial navigation systems (INS) aided by exteroceptive range and/or bearing sensors (such as cameras, LiDAR, and sonars) with different geometric features (points, lines, planes, or their combinations). In particular, by reviewing common representations of geometric features, we introduce two sets of unified feature representations, i.e., the quaternion and closest point (CP) parameterizations. While the observability of vision-aided INS (VINS) with point features has been extensively studied in the literature, we analytically show that the general aided INS with point features preserves the same observability property, i.e., four unobservable directions, corresponding to the global yaw and the global translation of the sensor platform. We further prove that there are at least five (or seven) unobservable directions for the linearized aided INS with a single line (plane) feature, and, for the first time, analytically derive the unobservable subspace for the case of multiple lines or planes. Building upon this analysis for homogeneous features, we examine the observability of the same system but with combinations of heterogeneous features, and show that, in general, the system preserves at least four unobservable directions, while if global measurements are available, as expected, the unobservable subspace will have lower dimensions. We validate our analysis in Monte-Carlo simulations using both EKF-based visual-inertial SLAM and visual-inertial odometry (VIO) with different geometric features.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2019.2927835</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Extended Kalman filter ; Inertial navigation ; inertial navigation system ; Kalman filters ; Linearization ; Navigation systems ; Observability ; observability analysis ; Odometers ; Planes ; Quaternions ; Representations ; Simultaneous localization and mapping ; SLAM ; visual-inertial odometry ; Yaw</subject><ispartof>IEEE transactions on robotics, 2019-12, Vol.35 (6), p.1399-1418</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2a2440bf4b16d5c2b41334564d5928b0db6c42a42de754c394be4b4e05bbd2ad3</citedby><cites>FETCH-LOGICAL-c291t-2a2440bf4b16d5c2b41334564d5928b0db6c42a42de754c394be4b4e05bbd2ad3</cites><orcidid>0000-0001-9932-0685 ; 0000-0002-9675-9147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8799000$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8799000$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Yulin</creatorcontrib><creatorcontrib>Huang, Guoquan</creatorcontrib><title>Observability Analysis of Aided INS With Heterogeneous Features of Points, Lines, and Planes</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>In this article, we perform a thorough observability analysis for linearized inertial navigation systems (INS) aided by exteroceptive range and/or bearing sensors (such as cameras, LiDAR, and sonars) with different geometric features (points, lines, planes, or their combinations). In particular, by reviewing common representations of geometric features, we introduce two sets of unified feature representations, i.e., the quaternion and closest point (CP) parameterizations. While the observability of vision-aided INS (VINS) with point features has been extensively studied in the literature, we analytically show that the general aided INS with point features preserves the same observability property, i.e., four unobservable directions, corresponding to the global yaw and the global translation of the sensor platform. We further prove that there are at least five (or seven) unobservable directions for the linearized aided INS with a single line (plane) feature, and, for the first time, analytically derive the unobservable subspace for the case of multiple lines or planes. Building upon this analysis for homogeneous features, we examine the observability of the same system but with combinations of heterogeneous features, and show that, in general, the system preserves at least four unobservable directions, while if global measurements are available, as expected, the unobservable subspace will have lower dimensions. We validate our analysis in Monte-Carlo simulations using both EKF-based visual-inertial SLAM and visual-inertial odometry (VIO) with different geometric features.</description><subject>Extended Kalman filter</subject><subject>Inertial navigation</subject><subject>inertial navigation system</subject><subject>Kalman filters</subject><subject>Linearization</subject><subject>Navigation systems</subject><subject>Observability</subject><subject>observability analysis</subject><subject>Odometers</subject><subject>Planes</subject><subject>Quaternions</subject><subject>Representations</subject><subject>Simultaneous localization and mapping</subject><subject>SLAM</subject><subject>visual-inertial odometry</subject><subject>Yaw</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYhoMoOKd3wUvAq5352TbHMZwbDDd04kUISfNVM2o7k1bYf2_nhqf3PTzvB9-D0DUlI0qJul8_L0eMUDViimU5lydoQJWgCRFpftp3KVnCicrP0UWMG0KYUIQP0PvSRgg_xvrKtzs8rk21iz7ipsRj78Dh-dMLfvPtJ55BC6H5gBqaLuIpmLYL8AeuGl-38Q4vfA19mNrhVWX6fonOSlNFuDrmEL1OH9aTWbJYPs4n40VSMEXbhBkmBLGlsDR1smBWUM6FTIWTiuWWOJsWghnBHGRSFFwJC8IKINJax4zjQ3R7uLsNzXcHsdWbpgv9K1EzzliWCsVpT5EDVYQmxgCl3gb_ZcJOU6L3DnXvUO8d6qPDfnJzmHgA-MfzTClCCP8FSWNsaw</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Yang, Yulin</creator><creator>Huang, Guoquan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9932-0685</orcidid><orcidid>https://orcid.org/0000-0002-9675-9147</orcidid></search><sort><creationdate>201912</creationdate><title>Observability Analysis of Aided INS With Heterogeneous Features of Points, Lines, and Planes</title><author>Yang, Yulin ; Huang, Guoquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2a2440bf4b16d5c2b41334564d5928b0db6c42a42de754c394be4b4e05bbd2ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Extended Kalman filter</topic><topic>Inertial navigation</topic><topic>inertial navigation system</topic><topic>Kalman filters</topic><topic>Linearization</topic><topic>Navigation systems</topic><topic>Observability</topic><topic>observability analysis</topic><topic>Odometers</topic><topic>Planes</topic><topic>Quaternions</topic><topic>Representations</topic><topic>Simultaneous localization and mapping</topic><topic>SLAM</topic><topic>visual-inertial odometry</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yulin</creatorcontrib><creatorcontrib>Huang, Guoquan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Yulin</au><au>Huang, Guoquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observability Analysis of Aided INS With Heterogeneous Features of Points, Lines, and Planes</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2019-12</date><risdate>2019</risdate><volume>35</volume><issue>6</issue><spage>1399</spage><epage>1418</epage><pages>1399-1418</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>In this article, we perform a thorough observability analysis for linearized inertial navigation systems (INS) aided by exteroceptive range and/or bearing sensors (such as cameras, LiDAR, and sonars) with different geometric features (points, lines, planes, or their combinations). In particular, by reviewing common representations of geometric features, we introduce two sets of unified feature representations, i.e., the quaternion and closest point (CP) parameterizations. While the observability of vision-aided INS (VINS) with point features has been extensively studied in the literature, we analytically show that the general aided INS with point features preserves the same observability property, i.e., four unobservable directions, corresponding to the global yaw and the global translation of the sensor platform. We further prove that there are at least five (or seven) unobservable directions for the linearized aided INS with a single line (plane) feature, and, for the first time, analytically derive the unobservable subspace for the case of multiple lines or planes. Building upon this analysis for homogeneous features, we examine the observability of the same system but with combinations of heterogeneous features, and show that, in general, the system preserves at least four unobservable directions, while if global measurements are available, as expected, the unobservable subspace will have lower dimensions. We validate our analysis in Monte-Carlo simulations using both EKF-based visual-inertial SLAM and visual-inertial odometry (VIO) with different geometric features.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2019.2927835</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9932-0685</orcidid><orcidid>https://orcid.org/0000-0002-9675-9147</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2019-12, Vol.35 (6), p.1399-1418
issn 1552-3098
1941-0468
language eng
recordid cdi_ieee_primary_8799000
source IEEE Electronic Library (IEL)
subjects Extended Kalman filter
Inertial navigation
inertial navigation system
Kalman filters
Linearization
Navigation systems
Observability
observability analysis
Odometers
Planes
Quaternions
Representations
Simultaneous localization and mapping
SLAM
visual-inertial odometry
Yaw
title Observability Analysis of Aided INS With Heterogeneous Features of Points, Lines, and Planes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observability%20Analysis%20of%20Aided%20INS%20With%20Heterogeneous%20Features%20of%20Points,%20Lines,%20and%20Planes&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Yang,%20Yulin&rft.date=2019-12&rft.volume=35&rft.issue=6&rft.spage=1399&rft.epage=1418&rft.pages=1399-1418&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2019.2927835&rft_dat=%3Cproquest_RIE%3E2322764931%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322764931&rft_id=info:pmid/&rft_ieee_id=8799000&rfr_iscdi=true