Control strategies for parallel hybrid vehicles
Presents a fuzzy logic based energy management and control strategy for parallel hybrid vehicles. Using the driver commands, the state of charge of the battery, and the motor/generator speed, a set of fuzzy logic control rules has been developed, to effectively split the power between the two powerp...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 528 vol.1 |
---|---|
container_issue | 6 |
container_start_page | 524 |
container_title | |
container_volume | 1 |
creator | Salman, M. Schouten, N.J. Kheir, N.A. |
description | Presents a fuzzy logic based energy management and control strategy for parallel hybrid vehicles. Using the driver commands, the state of charge of the battery, and the motor/generator speed, a set of fuzzy logic control rules has been developed, to effectively split the power between the two powerplants: electric motor and internal combustion engine. The underlying theme of the fuzzy rules is to optimize the operational efficiency of all components, considered as one system. Simulation results are used to assess the performance of the controller. A forward-looking hybrid vehicle simulation model is used to implement the control strategies. Potential fuel economy improvement has been shown by using fuzzy logic, relative to other strategies, which maximize only the efficiency of the internal combustion engine. |
doi_str_mv | 10.1109/ACC.2000.878955 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_878955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>878955</ieee_id><sourcerecordid>878955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-c5d415c8f461d8163c69455fc250161a7ea6d9778a626e9e52e5608cbaf905b33</originalsourceid><addsrcrecordid>eNotj0tLw0AUhQcfYKhZC67yB5LeO5M7j2UJaoWCG12XyeTGRkZTZoLQf2-hwoGz-g7fEeIBoUEEt950XSMBoLHGOqIrUUhlbE1W47UonbFwjiJC196IAkyratTo7kSZ89eZAwLtJBZi3c0_S5pjlZfkF_6cOFfjnKqjTz5GjtXh1KdpqH75MIXI-V7cjj5mLv97JT6en967bb17e3ntNrs6SLRLHWhokYIdW42DRa2Cdi3RGCTBWcQb9npwxlivpWbHJJk02ND70QH1Sq3E42V3Yub9MU3fPp32l7fqDxY7RMg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Control strategies for parallel hybrid vehicles</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Salman, M. ; Schouten, N.J. ; Kheir, N.A.</creator><creatorcontrib>Salman, M. ; Schouten, N.J. ; Kheir, N.A.</creatorcontrib><description>Presents a fuzzy logic based energy management and control strategy for parallel hybrid vehicles. Using the driver commands, the state of charge of the battery, and the motor/generator speed, a set of fuzzy logic control rules has been developed, to effectively split the power between the two powerplants: electric motor and internal combustion engine. The underlying theme of the fuzzy rules is to optimize the operational efficiency of all components, considered as one system. Simulation results are used to assess the performance of the controller. A forward-looking hybrid vehicle simulation model is used to implement the control strategies. Potential fuel economy improvement has been shown by using fuzzy logic, relative to other strategies, which maximize only the efficiency of the internal combustion engine.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9780780355194</identifier><identifier>ISBN: 0780355199</identifier><identifier>EISSN: 2378-5861</identifier><identifier>DOI: 10.1109/ACC.2000.878955</identifier><language>eng</language><publisher>IEEE</publisher><subject>Batteries ; Electric motors ; Energy management ; Fuel economy ; Fuzzy logic ; Fuzzy systems ; Internal combustion engines ; Power generation ; Power system modeling ; Vehicles</subject><ispartof>Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), 2000, Vol.1 (6), p.524-528 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-c5d415c8f461d8163c69455fc250161a7ea6d9778a626e9e52e5608cbaf905b33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/878955$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/878955$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Salman, M.</creatorcontrib><creatorcontrib>Schouten, N.J.</creatorcontrib><creatorcontrib>Kheir, N.A.</creatorcontrib><title>Control strategies for parallel hybrid vehicles</title><title>Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334)</title><addtitle>ACC</addtitle><description>Presents a fuzzy logic based energy management and control strategy for parallel hybrid vehicles. Using the driver commands, the state of charge of the battery, and the motor/generator speed, a set of fuzzy logic control rules has been developed, to effectively split the power between the two powerplants: electric motor and internal combustion engine. The underlying theme of the fuzzy rules is to optimize the operational efficiency of all components, considered as one system. Simulation results are used to assess the performance of the controller. A forward-looking hybrid vehicle simulation model is used to implement the control strategies. Potential fuel economy improvement has been shown by using fuzzy logic, relative to other strategies, which maximize only the efficiency of the internal combustion engine.</description><subject>Batteries</subject><subject>Electric motors</subject><subject>Energy management</subject><subject>Fuel economy</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Internal combustion engines</subject><subject>Power generation</subject><subject>Power system modeling</subject><subject>Vehicles</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9780780355194</isbn><isbn>0780355199</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLw0AUhQcfYKhZC67yB5LeO5M7j2UJaoWCG12XyeTGRkZTZoLQf2-hwoGz-g7fEeIBoUEEt950XSMBoLHGOqIrUUhlbE1W47UonbFwjiJC196IAkyratTo7kSZ89eZAwLtJBZi3c0_S5pjlZfkF_6cOFfjnKqjTz5GjtXh1KdpqH75MIXI-V7cjj5mLv97JT6en967bb17e3ntNrs6SLRLHWhokYIdW42DRa2Cdi3RGCTBWcQb9npwxlivpWbHJJk02ND70QH1Sq3E42V3Yub9MU3fPp32l7fqDxY7RMg</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Salman, M.</creator><creator>Schouten, N.J.</creator><creator>Kheir, N.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Control strategies for parallel hybrid vehicles</title><author>Salman, M. ; Schouten, N.J. ; Kheir, N.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-c5d415c8f461d8163c69455fc250161a7ea6d9778a626e9e52e5608cbaf905b33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Batteries</topic><topic>Electric motors</topic><topic>Energy management</topic><topic>Fuel economy</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Internal combustion engines</topic><topic>Power generation</topic><topic>Power system modeling</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Salman, M.</creatorcontrib><creatorcontrib>Schouten, N.J.</creatorcontrib><creatorcontrib>Kheir, N.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salman, M.</au><au>Schouten, N.J.</au><au>Kheir, N.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Control strategies for parallel hybrid vehicles</atitle><btitle>Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334)</btitle><stitle>ACC</stitle><date>2000</date><risdate>2000</risdate><volume>1</volume><issue>6</issue><spage>524</spage><epage>528 vol.1</epage><pages>524-528 vol.1</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9780780355194</isbn><isbn>0780355199</isbn><abstract>Presents a fuzzy logic based energy management and control strategy for parallel hybrid vehicles. Using the driver commands, the state of charge of the battery, and the motor/generator speed, a set of fuzzy logic control rules has been developed, to effectively split the power between the two powerplants: electric motor and internal combustion engine. The underlying theme of the fuzzy rules is to optimize the operational efficiency of all components, considered as one system. Simulation results are used to assess the performance of the controller. A forward-looking hybrid vehicle simulation model is used to implement the control strategies. Potential fuel economy improvement has been shown by using fuzzy logic, relative to other strategies, which maximize only the efficiency of the internal combustion engine.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2000.878955</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0743-1619 |
ispartof | Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), 2000, Vol.1 (6), p.524-528 vol.1 |
issn | 0743-1619 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_878955 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Batteries Electric motors Energy management Fuel economy Fuzzy logic Fuzzy systems Internal combustion engines Power generation Power system modeling Vehicles |
title | Control strategies for parallel hybrid vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A09%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Control%20strategies%20for%20parallel%20hybrid%20vehicles&rft.btitle=Proceedings%20of%20the%202000%20American%20Control%20Conference.%20ACC%20(IEEE%20Cat.%20No.00CH36334)&rft.au=Salman,%20M.&rft.date=2000&rft.volume=1&rft.issue=6&rft.spage=524&rft.epage=528%20vol.1&rft.pages=524-528%20vol.1&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9780780355194&rft.isbn_list=0780355199&rft_id=info:doi/10.1109/ACC.2000.878955&rft_dat=%3Cieee_6IE%3E878955%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=878955&rfr_iscdi=true |