Control strategies for parallel hybrid vehicles

Presents a fuzzy logic based energy management and control strategy for parallel hybrid vehicles. Using the driver commands, the state of charge of the battery, and the motor/generator speed, a set of fuzzy logic control rules has been developed, to effectively split the power between the two powerp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Salman, M., Schouten, N.J., Kheir, N.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 528 vol.1
container_issue 6
container_start_page 524
container_title
container_volume 1
creator Salman, M.
Schouten, N.J.
Kheir, N.A.
description Presents a fuzzy logic based energy management and control strategy for parallel hybrid vehicles. Using the driver commands, the state of charge of the battery, and the motor/generator speed, a set of fuzzy logic control rules has been developed, to effectively split the power between the two powerplants: electric motor and internal combustion engine. The underlying theme of the fuzzy rules is to optimize the operational efficiency of all components, considered as one system. Simulation results are used to assess the performance of the controller. A forward-looking hybrid vehicle simulation model is used to implement the control strategies. Potential fuel economy improvement has been shown by using fuzzy logic, relative to other strategies, which maximize only the efficiency of the internal combustion engine.
doi_str_mv 10.1109/ACC.2000.878955
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_878955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>878955</ieee_id><sourcerecordid>878955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-c5d415c8f461d8163c69455fc250161a7ea6d9778a626e9e52e5608cbaf905b33</originalsourceid><addsrcrecordid>eNotj0tLw0AUhQcfYKhZC67yB5LeO5M7j2UJaoWCG12XyeTGRkZTZoLQf2-hwoGz-g7fEeIBoUEEt950XSMBoLHGOqIrUUhlbE1W47UonbFwjiJC196IAkyratTo7kSZ89eZAwLtJBZi3c0_S5pjlZfkF_6cOFfjnKqjTz5GjtXh1KdpqH75MIXI-V7cjj5mLv97JT6en967bb17e3ntNrs6SLRLHWhokYIdW42DRa2Cdi3RGCTBWcQb9npwxlivpWbHJJk02ND70QH1Sq3E42V3Yub9MU3fPp32l7fqDxY7RMg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Control strategies for parallel hybrid vehicles</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Salman, M. ; Schouten, N.J. ; Kheir, N.A.</creator><creatorcontrib>Salman, M. ; Schouten, N.J. ; Kheir, N.A.</creatorcontrib><description>Presents a fuzzy logic based energy management and control strategy for parallel hybrid vehicles. Using the driver commands, the state of charge of the battery, and the motor/generator speed, a set of fuzzy logic control rules has been developed, to effectively split the power between the two powerplants: electric motor and internal combustion engine. The underlying theme of the fuzzy rules is to optimize the operational efficiency of all components, considered as one system. Simulation results are used to assess the performance of the controller. A forward-looking hybrid vehicle simulation model is used to implement the control strategies. Potential fuel economy improvement has been shown by using fuzzy logic, relative to other strategies, which maximize only the efficiency of the internal combustion engine.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9780780355194</identifier><identifier>ISBN: 0780355199</identifier><identifier>EISSN: 2378-5861</identifier><identifier>DOI: 10.1109/ACC.2000.878955</identifier><language>eng</language><publisher>IEEE</publisher><subject>Batteries ; Electric motors ; Energy management ; Fuel economy ; Fuzzy logic ; Fuzzy systems ; Internal combustion engines ; Power generation ; Power system modeling ; Vehicles</subject><ispartof>Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), 2000, Vol.1 (6), p.524-528 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-c5d415c8f461d8163c69455fc250161a7ea6d9778a626e9e52e5608cbaf905b33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/878955$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/878955$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Salman, M.</creatorcontrib><creatorcontrib>Schouten, N.J.</creatorcontrib><creatorcontrib>Kheir, N.A.</creatorcontrib><title>Control strategies for parallel hybrid vehicles</title><title>Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334)</title><addtitle>ACC</addtitle><description>Presents a fuzzy logic based energy management and control strategy for parallel hybrid vehicles. Using the driver commands, the state of charge of the battery, and the motor/generator speed, a set of fuzzy logic control rules has been developed, to effectively split the power between the two powerplants: electric motor and internal combustion engine. The underlying theme of the fuzzy rules is to optimize the operational efficiency of all components, considered as one system. Simulation results are used to assess the performance of the controller. A forward-looking hybrid vehicle simulation model is used to implement the control strategies. Potential fuel economy improvement has been shown by using fuzzy logic, relative to other strategies, which maximize only the efficiency of the internal combustion engine.</description><subject>Batteries</subject><subject>Electric motors</subject><subject>Energy management</subject><subject>Fuel economy</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Internal combustion engines</subject><subject>Power generation</subject><subject>Power system modeling</subject><subject>Vehicles</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9780780355194</isbn><isbn>0780355199</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLw0AUhQcfYKhZC67yB5LeO5M7j2UJaoWCG12XyeTGRkZTZoLQf2-hwoGz-g7fEeIBoUEEt950XSMBoLHGOqIrUUhlbE1W47UonbFwjiJC196IAkyratTo7kSZ89eZAwLtJBZi3c0_S5pjlZfkF_6cOFfjnKqjTz5GjtXh1KdpqH75MIXI-V7cjj5mLv97JT6en967bb17e3ntNrs6SLRLHWhokYIdW42DRa2Cdi3RGCTBWcQb9npwxlivpWbHJJk02ND70QH1Sq3E42V3Yub9MU3fPp32l7fqDxY7RMg</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Salman, M.</creator><creator>Schouten, N.J.</creator><creator>Kheir, N.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Control strategies for parallel hybrid vehicles</title><author>Salman, M. ; Schouten, N.J. ; Kheir, N.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-c5d415c8f461d8163c69455fc250161a7ea6d9778a626e9e52e5608cbaf905b33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Batteries</topic><topic>Electric motors</topic><topic>Energy management</topic><topic>Fuel economy</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Internal combustion engines</topic><topic>Power generation</topic><topic>Power system modeling</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Salman, M.</creatorcontrib><creatorcontrib>Schouten, N.J.</creatorcontrib><creatorcontrib>Kheir, N.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salman, M.</au><au>Schouten, N.J.</au><au>Kheir, N.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Control strategies for parallel hybrid vehicles</atitle><btitle>Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334)</btitle><stitle>ACC</stitle><date>2000</date><risdate>2000</risdate><volume>1</volume><issue>6</issue><spage>524</spage><epage>528 vol.1</epage><pages>524-528 vol.1</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9780780355194</isbn><isbn>0780355199</isbn><abstract>Presents a fuzzy logic based energy management and control strategy for parallel hybrid vehicles. Using the driver commands, the state of charge of the battery, and the motor/generator speed, a set of fuzzy logic control rules has been developed, to effectively split the power between the two powerplants: electric motor and internal combustion engine. The underlying theme of the fuzzy rules is to optimize the operational efficiency of all components, considered as one system. Simulation results are used to assess the performance of the controller. A forward-looking hybrid vehicle simulation model is used to implement the control strategies. Potential fuel economy improvement has been shown by using fuzzy logic, relative to other strategies, which maximize only the efficiency of the internal combustion engine.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2000.878955</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), 2000, Vol.1 (6), p.524-528 vol.1
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_878955
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Batteries
Electric motors
Energy management
Fuel economy
Fuzzy logic
Fuzzy systems
Internal combustion engines
Power generation
Power system modeling
Vehicles
title Control strategies for parallel hybrid vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A09%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Control%20strategies%20for%20parallel%20hybrid%20vehicles&rft.btitle=Proceedings%20of%20the%202000%20American%20Control%20Conference.%20ACC%20(IEEE%20Cat.%20No.00CH36334)&rft.au=Salman,%20M.&rft.date=2000&rft.volume=1&rft.issue=6&rft.spage=524&rft.epage=528%20vol.1&rft.pages=524-528%20vol.1&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9780780355194&rft.isbn_list=0780355199&rft_id=info:doi/10.1109/ACC.2000.878955&rft_dat=%3Cieee_6IE%3E878955%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=878955&rfr_iscdi=true