Fuel Efficient Connected Cruise Control for Heavy-Duty Trucks in Real Traffic
In this paper, we present a systematic approach for fuel-economy optimization of a connected automated truck that utilizes motion information from multiple vehicles ahead via vehicle-to-vehicle (V2V) communication. Position and velocity data collected from a chain of human-driven vehicles are utiliz...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2020-11, Vol.28 (6), p.2474-2481 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2481 |
---|---|
container_issue | 6 |
container_start_page | 2474 |
container_title | IEEE transactions on control systems technology |
container_volume | 28 |
creator | He, Chaozhe R. Ge, Jin I. Orosz, Gabor |
description | In this paper, we present a systematic approach for fuel-economy optimization of a connected automated truck that utilizes motion information from multiple vehicles ahead via vehicle-to-vehicle (V2V) communication. Position and velocity data collected from a chain of human-driven vehicles are utilized to design a connected cruise controller that smoothly responds to traffic perturbations while maximizing energy efficiency. The proposed design is evaluated using a high-fidelity truck model and the robustness of the design is validated on real traffic data sets. It is shown that optimally utilizing V2V connectivity leads to around 10% fuel economy improvements compared to the best nonconnected design. |
doi_str_mv | 10.1109/TCST.2019.2925583 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8777295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8777295</ieee_id><sourcerecordid>2449960839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a1e405c0062880f2b08df51798bd91b5789cb94a8a183fba9fd9eddf8e57a1263</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhosoOKc_QLwpeCmdJ0nTJpdSNydMBK3XJW1PoHM2M0mV_XtTNvTWq_PB854DTxRdEpgRAvK2LF7LGQUiZ1RSzgU7iiYk1ARExo9DDxlLMs6y0-jMuTUASTnNJ9HTYsBNPNe6azrsfVyYvsfGYxsXdugcjgtvzSbWxsZLVF-75H7wu7i0Q_Pu4q6PX1BtwqjGE-fRiVYbhxeHOo3eFvOyWCar54fH4m6VNIxlPlEEU-ANQEaFAE1rEK3mJJeibiWpeS5kU8tUCUUE07WSupXYtlogzxWhGZtG1_u7W2s-B3S-WpvB9uFlRdNUygwEk4Eie6qxxjmLutra7kPZXUWgGq1Vo7VqtFYdrIWM2Ge-sTbajVIa_M0BAM9lSlIROiqLzivfmb4wQ-9D9Ob_0UBf7ekO8Y8SeZ5TydkP0n-Iqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449960839</pqid></control><display><type>article</type><title>Fuel Efficient Connected Cruise Control for Heavy-Duty Trucks in Real Traffic</title><source>IEEE Electronic Library (IEL)</source><creator>He, Chaozhe R. ; Ge, Jin I. ; Orosz, Gabor</creator><creatorcontrib>He, Chaozhe R. ; Ge, Jin I. ; Orosz, Gabor</creatorcontrib><description>In this paper, we present a systematic approach for fuel-economy optimization of a connected automated truck that utilizes motion information from multiple vehicles ahead via vehicle-to-vehicle (V2V) communication. Position and velocity data collected from a chain of human-driven vehicles are utilized to design a connected cruise controller that smoothly responds to traffic perturbations while maximizing energy efficiency. The proposed design is evaluated using a high-fidelity truck model and the robustness of the design is validated on real traffic data sets. It is shown that optimally utilizing V2V connectivity leads to around 10% fuel economy improvements compared to the best nonconnected design.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2019.2925583</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Automation & Control Systems ; Computational modeling ; Connected automated vehicle (CAV) ; Control systems design ; Cruise control ; Data models ; data-based apporach ; Energy consumption ; Energy efficiency ; Engineering ; Engineering, Electrical & Electronic ; Fuel consumption ; Fuel economy ; Heavy duty trucks ; Optimization ; Perturbation methods ; Science & Technology ; Technology ; Traffic information ; Vehicles</subject><ispartof>IEEE transactions on control systems technology, 2020-11, Vol.28 (6), p.2474-2481</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>46</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000579414800029</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c336t-a1e405c0062880f2b08df51798bd91b5789cb94a8a183fba9fd9eddf8e57a1263</citedby><cites>FETCH-LOGICAL-c336t-a1e405c0062880f2b08df51798bd91b5789cb94a8a183fba9fd9eddf8e57a1263</cites><orcidid>0000-0002-9000-3736 ; 0000-0001-6429-9337 ; 0000-0002-0299-8412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8777295$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,28257,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8777295$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Chaozhe R.</creatorcontrib><creatorcontrib>Ge, Jin I.</creatorcontrib><creatorcontrib>Orosz, Gabor</creatorcontrib><title>Fuel Efficient Connected Cruise Control for Heavy-Duty Trucks in Real Traffic</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><addtitle>IEEE T CONTR SYST T</addtitle><description>In this paper, we present a systematic approach for fuel-economy optimization of a connected automated truck that utilizes motion information from multiple vehicles ahead via vehicle-to-vehicle (V2V) communication. Position and velocity data collected from a chain of human-driven vehicles are utilized to design a connected cruise controller that smoothly responds to traffic perturbations while maximizing energy efficiency. The proposed design is evaluated using a high-fidelity truck model and the robustness of the design is validated on real traffic data sets. It is shown that optimally utilizing V2V connectivity leads to around 10% fuel economy improvements compared to the best nonconnected design.</description><subject>Automation & Control Systems</subject><subject>Computational modeling</subject><subject>Connected automated vehicle (CAV)</subject><subject>Control systems design</subject><subject>Cruise control</subject><subject>Data models</subject><subject>data-based apporach</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Fuel consumption</subject><subject>Fuel economy</subject><subject>Heavy duty trucks</subject><subject>Optimization</subject><subject>Perturbation methods</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Traffic information</subject><subject>Vehicles</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkF1LwzAUhosoOKc_QLwpeCmdJ0nTJpdSNydMBK3XJW1PoHM2M0mV_XtTNvTWq_PB854DTxRdEpgRAvK2LF7LGQUiZ1RSzgU7iiYk1ARExo9DDxlLMs6y0-jMuTUASTnNJ9HTYsBNPNe6azrsfVyYvsfGYxsXdugcjgtvzSbWxsZLVF-75H7wu7i0Q_Pu4q6PX1BtwqjGE-fRiVYbhxeHOo3eFvOyWCar54fH4m6VNIxlPlEEU-ANQEaFAE1rEK3mJJeibiWpeS5kU8tUCUUE07WSupXYtlogzxWhGZtG1_u7W2s-B3S-WpvB9uFlRdNUygwEk4Eie6qxxjmLutra7kPZXUWgGq1Vo7VqtFYdrIWM2Ge-sTbajVIa_M0BAM9lSlIROiqLzivfmb4wQ-9D9Ob_0UBf7ekO8Y8SeZ5TydkP0n-Iqw</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>He, Chaozhe R.</creator><creator>Ge, Jin I.</creator><creator>Orosz, Gabor</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9000-3736</orcidid><orcidid>https://orcid.org/0000-0001-6429-9337</orcidid><orcidid>https://orcid.org/0000-0002-0299-8412</orcidid></search><sort><creationdate>202011</creationdate><title>Fuel Efficient Connected Cruise Control for Heavy-Duty Trucks in Real Traffic</title><author>He, Chaozhe R. ; Ge, Jin I. ; Orosz, Gabor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a1e405c0062880f2b08df51798bd91b5789cb94a8a183fba9fd9eddf8e57a1263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automation & Control Systems</topic><topic>Computational modeling</topic><topic>Connected automated vehicle (CAV)</topic><topic>Control systems design</topic><topic>Cruise control</topic><topic>Data models</topic><topic>data-based apporach</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Fuel consumption</topic><topic>Fuel economy</topic><topic>Heavy duty trucks</topic><topic>Optimization</topic><topic>Perturbation methods</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Traffic information</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Chaozhe R.</creatorcontrib><creatorcontrib>Ge, Jin I.</creatorcontrib><creatorcontrib>Orosz, Gabor</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Chaozhe R.</au><au>Ge, Jin I.</au><au>Orosz, Gabor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuel Efficient Connected Cruise Control for Heavy-Duty Trucks in Real Traffic</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><stitle>IEEE T CONTR SYST T</stitle><date>2020-11</date><risdate>2020</risdate><volume>28</volume><issue>6</issue><spage>2474</spage><epage>2481</epage><pages>2474-2481</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>In this paper, we present a systematic approach for fuel-economy optimization of a connected automated truck that utilizes motion information from multiple vehicles ahead via vehicle-to-vehicle (V2V) communication. Position and velocity data collected from a chain of human-driven vehicles are utilized to design a connected cruise controller that smoothly responds to traffic perturbations while maximizing energy efficiency. The proposed design is evaluated using a high-fidelity truck model and the robustness of the design is validated on real traffic data sets. It is shown that optimally utilizing V2V connectivity leads to around 10% fuel economy improvements compared to the best nonconnected design.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TCST.2019.2925583</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9000-3736</orcidid><orcidid>https://orcid.org/0000-0001-6429-9337</orcidid><orcidid>https://orcid.org/0000-0002-0299-8412</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2020-11, Vol.28 (6), p.2474-2481 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_ieee_primary_8777295 |
source | IEEE Electronic Library (IEL) |
subjects | Automation & Control Systems Computational modeling Connected automated vehicle (CAV) Control systems design Cruise control Data models data-based apporach Energy consumption Energy efficiency Engineering Engineering, Electrical & Electronic Fuel consumption Fuel economy Heavy duty trucks Optimization Perturbation methods Science & Technology Technology Traffic information Vehicles |
title | Fuel Efficient Connected Cruise Control for Heavy-Duty Trucks in Real Traffic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T12%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuel%20Efficient%20Connected%20Cruise%20Control%20for%20Heavy-Duty%20Trucks%20in%20Real%20Traffic&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=He,%20Chaozhe%20R.&rft.date=2020-11&rft.volume=28&rft.issue=6&rft.spage=2474&rft.epage=2481&rft.pages=2474-2481&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2019.2925583&rft_dat=%3Cproquest_RIE%3E2449960839%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449960839&rft_id=info:pmid/&rft_ieee_id=8777295&rfr_iscdi=true |