Electromagnetic Position Measurement System Immune to Ferromagnetic Disturbances
This paper develops an electromagnet-based position measurement system for industrial actuators which offers significant advantages compared with traditional position measurement systems. These advantages include low cost, non-contacting operation, easy installation, and robustness to magnetic distu...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2019-11, Vol.19 (21), p.9662-9671 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9671 |
---|---|
container_issue | 21 |
container_start_page | 9662 |
container_title | IEEE sensors journal |
container_volume | 19 |
creator | Wang, Heng Madson, Ryan Rajamani, Rajesh |
description | This paper develops an electromagnet-based position measurement system for industrial actuators which offers significant advantages compared with traditional position measurement systems. These advantages include low cost, non-contacting operation, easy installation, and robustness to magnetic disturbances. In the first embodiment of the sensor, the electromagnet is located on the stationary actuator housing while the sensor is mounted on the actuator's moving piston rod. This requires power to be supplied to the electronics on a moving object, and therefore a second embodiment that eliminates this disadvantage is developed. The second embodiment locates both the electromagnet and the powered sensor on the stationary housing. A mu-metal film of high magnetic permeability is located on the moving piston. Due to its high magnetic permeability, a significant fraction of the magnetic field measured by the sensor is coupled through the piston of the actuator. Hence, as the piston position changes, the magnetic field measured by the sensor changes. This leads to an excellent position measurement system with high sensitivity. The experimental results show that the second position sensor embodiment can provide 1% accuracy in position measurement, can reject the influence of disturbances from magnetic objects and can measure positions for stroke lengths up to 20 cm. Longer stroke lengths can be handled using additional daisy-chained sensors. |
doi_str_mv | 10.1109/JSEN.2019.2929229 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8770234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8770234</ieee_id><sourcerecordid>2303949763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-29d0bb6f26e8261e7d21d626bdb513bb5b3ee09e850ca558201b9dc543be83fd3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QLwseN6aj81mc5TaaqVqoQrewiY7K1u6m5pkD_33zdIiMoeZw_POMA9CtwRPCMHy4XU9e59QTOSEylhUnqER4bxIiciK82FmOM2Y-L5EV95vcCQFFyO0mm3BBGfb8qeD0JhkZX0TGtslb1D63kELXUjWex-gTRZt23eQBJvMwf3LPDU-9E6XnQF_jS7qcuvh5tTH6Gs--5y-pMuP58X0cZmaDNOQUllhrfOa5lDQnICoKKlymutKc8K05poBYAkFx6aMf8TXtKwMz5iGgtUVG6P7496ds789-KA2tnddPKkow0xmUuQsUuRIGWe9d1CrnWva0u0VwWoQpwZxahCnTuJi5u6YaQDgjy-EwJRl7ACS02rx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303949763</pqid></control><display><type>article</type><title>Electromagnetic Position Measurement System Immune to Ferromagnetic Disturbances</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Heng ; Madson, Ryan ; Rajamani, Rajesh</creator><creatorcontrib>Wang, Heng ; Madson, Ryan ; Rajamani, Rajesh</creatorcontrib><description>This paper develops an electromagnet-based position measurement system for industrial actuators which offers significant advantages compared with traditional position measurement systems. These advantages include low cost, non-contacting operation, easy installation, and robustness to magnetic disturbances. In the first embodiment of the sensor, the electromagnet is located on the stationary actuator housing while the sensor is mounted on the actuator's moving piston rod. This requires power to be supplied to the electronics on a moving object, and therefore a second embodiment that eliminates this disadvantage is developed. The second embodiment locates both the electromagnet and the powered sensor on the stationary housing. A mu-metal film of high magnetic permeability is located on the moving piston. Due to its high magnetic permeability, a significant fraction of the magnetic field measured by the sensor is coupled through the piston of the actuator. Hence, as the piston position changes, the magnetic field measured by the sensor changes. This leads to an excellent position measurement system with high sensitivity. The experimental results show that the second position sensor embodiment can provide 1% accuracy in position measurement, can reject the influence of disturbances from magnetic objects and can measure positions for stroke lengths up to 20 cm. Longer stroke lengths can be handled using additional daisy-chained sensors.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2929229</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; electromagnetic position sensing ; Electromagnets ; Ferromagnetism ; Housings ; Industrial actuators ; Magnetic disturbances ; Magnetic field measurement ; Magnetic fields ; Magnetic permeability ; magnetic sensing ; Magnetic sensors ; Permeability ; Pistons ; Pneumatics ; position estimation ; Position measurement ; Position sensing ; position sensors ; Sensors</subject><ispartof>IEEE sensors journal, 2019-11, Vol.19 (21), p.9662-9671</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-29d0bb6f26e8261e7d21d626bdb513bb5b3ee09e850ca558201b9dc543be83fd3</citedby><cites>FETCH-LOGICAL-c402t-29d0bb6f26e8261e7d21d626bdb513bb5b3ee09e850ca558201b9dc543be83fd3</cites><orcidid>0000-0001-5937-0282 ; 0000-0002-8670-7132 ; 0000-0001-9931-7419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8770234$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8770234$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Heng</creatorcontrib><creatorcontrib>Madson, Ryan</creatorcontrib><creatorcontrib>Rajamani, Rajesh</creatorcontrib><title>Electromagnetic Position Measurement System Immune to Ferromagnetic Disturbances</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This paper develops an electromagnet-based position measurement system for industrial actuators which offers significant advantages compared with traditional position measurement systems. These advantages include low cost, non-contacting operation, easy installation, and robustness to magnetic disturbances. In the first embodiment of the sensor, the electromagnet is located on the stationary actuator housing while the sensor is mounted on the actuator's moving piston rod. This requires power to be supplied to the electronics on a moving object, and therefore a second embodiment that eliminates this disadvantage is developed. The second embodiment locates both the electromagnet and the powered sensor on the stationary housing. A mu-metal film of high magnetic permeability is located on the moving piston. Due to its high magnetic permeability, a significant fraction of the magnetic field measured by the sensor is coupled through the piston of the actuator. Hence, as the piston position changes, the magnetic field measured by the sensor changes. This leads to an excellent position measurement system with high sensitivity. The experimental results show that the second position sensor embodiment can provide 1% accuracy in position measurement, can reject the influence of disturbances from magnetic objects and can measure positions for stroke lengths up to 20 cm. Longer stroke lengths can be handled using additional daisy-chained sensors.</description><subject>Actuators</subject><subject>electromagnetic position sensing</subject><subject>Electromagnets</subject><subject>Ferromagnetism</subject><subject>Housings</subject><subject>Industrial actuators</subject><subject>Magnetic disturbances</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Magnetic permeability</subject><subject>magnetic sensing</subject><subject>Magnetic sensors</subject><subject>Permeability</subject><subject>Pistons</subject><subject>Pneumatics</subject><subject>position estimation</subject><subject>Position measurement</subject><subject>Position sensing</subject><subject>position sensors</subject><subject>Sensors</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QLwseN6aj81mc5TaaqVqoQrewiY7K1u6m5pkD_33zdIiMoeZw_POMA9CtwRPCMHy4XU9e59QTOSEylhUnqER4bxIiciK82FmOM2Y-L5EV95vcCQFFyO0mm3BBGfb8qeD0JhkZX0TGtslb1D63kELXUjWex-gTRZt23eQBJvMwf3LPDU-9E6XnQF_jS7qcuvh5tTH6Gs--5y-pMuP58X0cZmaDNOQUllhrfOa5lDQnICoKKlymutKc8K05poBYAkFx6aMf8TXtKwMz5iGgtUVG6P7496ds789-KA2tnddPKkow0xmUuQsUuRIGWe9d1CrnWva0u0VwWoQpwZxahCnTuJi5u6YaQDgjy-EwJRl7ACS02rx</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Wang, Heng</creator><creator>Madson, Ryan</creator><creator>Rajamani, Rajesh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5937-0282</orcidid><orcidid>https://orcid.org/0000-0002-8670-7132</orcidid><orcidid>https://orcid.org/0000-0001-9931-7419</orcidid></search><sort><creationdate>20191101</creationdate><title>Electromagnetic Position Measurement System Immune to Ferromagnetic Disturbances</title><author>Wang, Heng ; Madson, Ryan ; Rajamani, Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-29d0bb6f26e8261e7d21d626bdb513bb5b3ee09e850ca558201b9dc543be83fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuators</topic><topic>electromagnetic position sensing</topic><topic>Electromagnets</topic><topic>Ferromagnetism</topic><topic>Housings</topic><topic>Industrial actuators</topic><topic>Magnetic disturbances</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Magnetic permeability</topic><topic>magnetic sensing</topic><topic>Magnetic sensors</topic><topic>Permeability</topic><topic>Pistons</topic><topic>Pneumatics</topic><topic>position estimation</topic><topic>Position measurement</topic><topic>Position sensing</topic><topic>position sensors</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Heng</creatorcontrib><creatorcontrib>Madson, Ryan</creatorcontrib><creatorcontrib>Rajamani, Rajesh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Heng</au><au>Madson, Ryan</au><au>Rajamani, Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic Position Measurement System Immune to Ferromagnetic Disturbances</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>19</volume><issue>21</issue><spage>9662</spage><epage>9671</epage><pages>9662-9671</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This paper develops an electromagnet-based position measurement system for industrial actuators which offers significant advantages compared with traditional position measurement systems. These advantages include low cost, non-contacting operation, easy installation, and robustness to magnetic disturbances. In the first embodiment of the sensor, the electromagnet is located on the stationary actuator housing while the sensor is mounted on the actuator's moving piston rod. This requires power to be supplied to the electronics on a moving object, and therefore a second embodiment that eliminates this disadvantage is developed. The second embodiment locates both the electromagnet and the powered sensor on the stationary housing. A mu-metal film of high magnetic permeability is located on the moving piston. Due to its high magnetic permeability, a significant fraction of the magnetic field measured by the sensor is coupled through the piston of the actuator. Hence, as the piston position changes, the magnetic field measured by the sensor changes. This leads to an excellent position measurement system with high sensitivity. The experimental results show that the second position sensor embodiment can provide 1% accuracy in position measurement, can reject the influence of disturbances from magnetic objects and can measure positions for stroke lengths up to 20 cm. Longer stroke lengths can be handled using additional daisy-chained sensors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2929229</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5937-0282</orcidid><orcidid>https://orcid.org/0000-0002-8670-7132</orcidid><orcidid>https://orcid.org/0000-0001-9931-7419</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2019-11, Vol.19 (21), p.9662-9671 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_8770234 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators electromagnetic position sensing Electromagnets Ferromagnetism Housings Industrial actuators Magnetic disturbances Magnetic field measurement Magnetic fields Magnetic permeability magnetic sensing Magnetic sensors Permeability Pistons Pneumatics position estimation Position measurement Position sensing position sensors Sensors |
title | Electromagnetic Position Measurement System Immune to Ferromagnetic Disturbances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20Position%20Measurement%20System%20Immune%20to%20Ferromagnetic%20Disturbances&rft.jtitle=IEEE%20sensors%20journal&rft.au=Wang,%20Heng&rft.date=2019-11-01&rft.volume=19&rft.issue=21&rft.spage=9662&rft.epage=9671&rft.pages=9662-9671&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2929229&rft_dat=%3Cproquest_RIE%3E2303949763%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303949763&rft_id=info:pmid/&rft_ieee_id=8770234&rfr_iscdi=true |