Electromagnetic Position Measurement System Immune to Ferromagnetic Disturbances

This paper develops an electromagnet-based position measurement system for industrial actuators which offers significant advantages compared with traditional position measurement systems. These advantages include low cost, non-contacting operation, easy installation, and robustness to magnetic distu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2019-11, Vol.19 (21), p.9662-9671
Hauptverfasser: Wang, Heng, Madson, Ryan, Rajamani, Rajesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9671
container_issue 21
container_start_page 9662
container_title IEEE sensors journal
container_volume 19
creator Wang, Heng
Madson, Ryan
Rajamani, Rajesh
description This paper develops an electromagnet-based position measurement system for industrial actuators which offers significant advantages compared with traditional position measurement systems. These advantages include low cost, non-contacting operation, easy installation, and robustness to magnetic disturbances. In the first embodiment of the sensor, the electromagnet is located on the stationary actuator housing while the sensor is mounted on the actuator's moving piston rod. This requires power to be supplied to the electronics on a moving object, and therefore a second embodiment that eliminates this disadvantage is developed. The second embodiment locates both the electromagnet and the powered sensor on the stationary housing. A mu-metal film of high magnetic permeability is located on the moving piston. Due to its high magnetic permeability, a significant fraction of the magnetic field measured by the sensor is coupled through the piston of the actuator. Hence, as the piston position changes, the magnetic field measured by the sensor changes. This leads to an excellent position measurement system with high sensitivity. The experimental results show that the second position sensor embodiment can provide 1% accuracy in position measurement, can reject the influence of disturbances from magnetic objects and can measure positions for stroke lengths up to 20 cm. Longer stroke lengths can be handled using additional daisy-chained sensors.
doi_str_mv 10.1109/JSEN.2019.2929229
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8770234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8770234</ieee_id><sourcerecordid>2303949763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-29d0bb6f26e8261e7d21d626bdb513bb5b3ee09e850ca558201b9dc543be83fd3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QLwseN6aj81mc5TaaqVqoQrewiY7K1u6m5pkD_33zdIiMoeZw_POMA9CtwRPCMHy4XU9e59QTOSEylhUnqER4bxIiciK82FmOM2Y-L5EV95vcCQFFyO0mm3BBGfb8qeD0JhkZX0TGtslb1D63kELXUjWex-gTRZt23eQBJvMwf3LPDU-9E6XnQF_jS7qcuvh5tTH6Gs--5y-pMuP58X0cZmaDNOQUllhrfOa5lDQnICoKKlymutKc8K05poBYAkFx6aMf8TXtKwMz5iGgtUVG6P7496ds789-KA2tnddPKkow0xmUuQsUuRIGWe9d1CrnWva0u0VwWoQpwZxahCnTuJi5u6YaQDgjy-EwJRl7ACS02rx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303949763</pqid></control><display><type>article</type><title>Electromagnetic Position Measurement System Immune to Ferromagnetic Disturbances</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Heng ; Madson, Ryan ; Rajamani, Rajesh</creator><creatorcontrib>Wang, Heng ; Madson, Ryan ; Rajamani, Rajesh</creatorcontrib><description>This paper develops an electromagnet-based position measurement system for industrial actuators which offers significant advantages compared with traditional position measurement systems. These advantages include low cost, non-contacting operation, easy installation, and robustness to magnetic disturbances. In the first embodiment of the sensor, the electromagnet is located on the stationary actuator housing while the sensor is mounted on the actuator's moving piston rod. This requires power to be supplied to the electronics on a moving object, and therefore a second embodiment that eliminates this disadvantage is developed. The second embodiment locates both the electromagnet and the powered sensor on the stationary housing. A mu-metal film of high magnetic permeability is located on the moving piston. Due to its high magnetic permeability, a significant fraction of the magnetic field measured by the sensor is coupled through the piston of the actuator. Hence, as the piston position changes, the magnetic field measured by the sensor changes. This leads to an excellent position measurement system with high sensitivity. The experimental results show that the second position sensor embodiment can provide 1% accuracy in position measurement, can reject the influence of disturbances from magnetic objects and can measure positions for stroke lengths up to 20 cm. Longer stroke lengths can be handled using additional daisy-chained sensors.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2929229</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; electromagnetic position sensing ; Electromagnets ; Ferromagnetism ; Housings ; Industrial actuators ; Magnetic disturbances ; Magnetic field measurement ; Magnetic fields ; Magnetic permeability ; magnetic sensing ; Magnetic sensors ; Permeability ; Pistons ; Pneumatics ; position estimation ; Position measurement ; Position sensing ; position sensors ; Sensors</subject><ispartof>IEEE sensors journal, 2019-11, Vol.19 (21), p.9662-9671</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-29d0bb6f26e8261e7d21d626bdb513bb5b3ee09e850ca558201b9dc543be83fd3</citedby><cites>FETCH-LOGICAL-c402t-29d0bb6f26e8261e7d21d626bdb513bb5b3ee09e850ca558201b9dc543be83fd3</cites><orcidid>0000-0001-5937-0282 ; 0000-0002-8670-7132 ; 0000-0001-9931-7419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8770234$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8770234$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Heng</creatorcontrib><creatorcontrib>Madson, Ryan</creatorcontrib><creatorcontrib>Rajamani, Rajesh</creatorcontrib><title>Electromagnetic Position Measurement System Immune to Ferromagnetic Disturbances</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This paper develops an electromagnet-based position measurement system for industrial actuators which offers significant advantages compared with traditional position measurement systems. These advantages include low cost, non-contacting operation, easy installation, and robustness to magnetic disturbances. In the first embodiment of the sensor, the electromagnet is located on the stationary actuator housing while the sensor is mounted on the actuator's moving piston rod. This requires power to be supplied to the electronics on a moving object, and therefore a second embodiment that eliminates this disadvantage is developed. The second embodiment locates both the electromagnet and the powered sensor on the stationary housing. A mu-metal film of high magnetic permeability is located on the moving piston. Due to its high magnetic permeability, a significant fraction of the magnetic field measured by the sensor is coupled through the piston of the actuator. Hence, as the piston position changes, the magnetic field measured by the sensor changes. This leads to an excellent position measurement system with high sensitivity. The experimental results show that the second position sensor embodiment can provide 1% accuracy in position measurement, can reject the influence of disturbances from magnetic objects and can measure positions for stroke lengths up to 20 cm. Longer stroke lengths can be handled using additional daisy-chained sensors.</description><subject>Actuators</subject><subject>electromagnetic position sensing</subject><subject>Electromagnets</subject><subject>Ferromagnetism</subject><subject>Housings</subject><subject>Industrial actuators</subject><subject>Magnetic disturbances</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Magnetic permeability</subject><subject>magnetic sensing</subject><subject>Magnetic sensors</subject><subject>Permeability</subject><subject>Pistons</subject><subject>Pneumatics</subject><subject>position estimation</subject><subject>Position measurement</subject><subject>Position sensing</subject><subject>position sensors</subject><subject>Sensors</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QLwseN6aj81mc5TaaqVqoQrewiY7K1u6m5pkD_33zdIiMoeZw_POMA9CtwRPCMHy4XU9e59QTOSEylhUnqER4bxIiciK82FmOM2Y-L5EV95vcCQFFyO0mm3BBGfb8qeD0JhkZX0TGtslb1D63kELXUjWex-gTRZt23eQBJvMwf3LPDU-9E6XnQF_jS7qcuvh5tTH6Gs--5y-pMuP58X0cZmaDNOQUllhrfOa5lDQnICoKKlymutKc8K05poBYAkFx6aMf8TXtKwMz5iGgtUVG6P7496ds789-KA2tnddPKkow0xmUuQsUuRIGWe9d1CrnWva0u0VwWoQpwZxahCnTuJi5u6YaQDgjy-EwJRl7ACS02rx</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Wang, Heng</creator><creator>Madson, Ryan</creator><creator>Rajamani, Rajesh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5937-0282</orcidid><orcidid>https://orcid.org/0000-0002-8670-7132</orcidid><orcidid>https://orcid.org/0000-0001-9931-7419</orcidid></search><sort><creationdate>20191101</creationdate><title>Electromagnetic Position Measurement System Immune to Ferromagnetic Disturbances</title><author>Wang, Heng ; Madson, Ryan ; Rajamani, Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-29d0bb6f26e8261e7d21d626bdb513bb5b3ee09e850ca558201b9dc543be83fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuators</topic><topic>electromagnetic position sensing</topic><topic>Electromagnets</topic><topic>Ferromagnetism</topic><topic>Housings</topic><topic>Industrial actuators</topic><topic>Magnetic disturbances</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Magnetic permeability</topic><topic>magnetic sensing</topic><topic>Magnetic sensors</topic><topic>Permeability</topic><topic>Pistons</topic><topic>Pneumatics</topic><topic>position estimation</topic><topic>Position measurement</topic><topic>Position sensing</topic><topic>position sensors</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Heng</creatorcontrib><creatorcontrib>Madson, Ryan</creatorcontrib><creatorcontrib>Rajamani, Rajesh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Heng</au><au>Madson, Ryan</au><au>Rajamani, Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic Position Measurement System Immune to Ferromagnetic Disturbances</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>19</volume><issue>21</issue><spage>9662</spage><epage>9671</epage><pages>9662-9671</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This paper develops an electromagnet-based position measurement system for industrial actuators which offers significant advantages compared with traditional position measurement systems. These advantages include low cost, non-contacting operation, easy installation, and robustness to magnetic disturbances. In the first embodiment of the sensor, the electromagnet is located on the stationary actuator housing while the sensor is mounted on the actuator's moving piston rod. This requires power to be supplied to the electronics on a moving object, and therefore a second embodiment that eliminates this disadvantage is developed. The second embodiment locates both the electromagnet and the powered sensor on the stationary housing. A mu-metal film of high magnetic permeability is located on the moving piston. Due to its high magnetic permeability, a significant fraction of the magnetic field measured by the sensor is coupled through the piston of the actuator. Hence, as the piston position changes, the magnetic field measured by the sensor changes. This leads to an excellent position measurement system with high sensitivity. The experimental results show that the second position sensor embodiment can provide 1% accuracy in position measurement, can reject the influence of disturbances from magnetic objects and can measure positions for stroke lengths up to 20 cm. Longer stroke lengths can be handled using additional daisy-chained sensors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2929229</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5937-0282</orcidid><orcidid>https://orcid.org/0000-0002-8670-7132</orcidid><orcidid>https://orcid.org/0000-0001-9931-7419</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2019-11, Vol.19 (21), p.9662-9671
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_8770234
source IEEE Electronic Library (IEL)
subjects Actuators
electromagnetic position sensing
Electromagnets
Ferromagnetism
Housings
Industrial actuators
Magnetic disturbances
Magnetic field measurement
Magnetic fields
Magnetic permeability
magnetic sensing
Magnetic sensors
Permeability
Pistons
Pneumatics
position estimation
Position measurement
Position sensing
position sensors
Sensors
title Electromagnetic Position Measurement System Immune to Ferromagnetic Disturbances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20Position%20Measurement%20System%20Immune%20to%20Ferromagnetic%20Disturbances&rft.jtitle=IEEE%20sensors%20journal&rft.au=Wang,%20Heng&rft.date=2019-11-01&rft.volume=19&rft.issue=21&rft.spage=9662&rft.epage=9671&rft.pages=9662-9671&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2929229&rft_dat=%3Cproquest_RIE%3E2303949763%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303949763&rft_id=info:pmid/&rft_ieee_id=8770234&rfr_iscdi=true