A Neural Network Model for Material Degradation Detection and Diagnosis Using Microscopic Images
Detection and diagnosis of material degradation are of a complex and challenging task since it is presently hand-operated by a human. Therefore, it leads to misinterpretation and avoids correct classification and diagnosis. In this paper, we develop a computer-assisted detection method of material f...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.92151-92160 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92160 |
---|---|
container_issue | |
container_start_page | 92151 |
container_title | IEEE access |
container_volume | 7 |
creator | Choi, Woosung Huh, Hyunsuk Tama, Bayu Adhi Park, Gyusang Lee, Seungchul |
description | Detection and diagnosis of material degradation are of a complex and challenging task since it is presently hand-operated by a human. Therefore, it leads to misinterpretation and avoids correct classification and diagnosis. In this paper, we develop a computer-assisted detection method of material failure by utilizing a deep learning approach. A deep convolutional neural network (CNN) model, combined with an image processing technique, e.g., adaptive histogram equalization, is trained to classify a real-world turbine tube degradation image data set, which is retrieved from a power generation company. The experimental result demonstrates the effectiveness of the proposed approach with predictive classification accuracy is up to 99.99% in comparison with a shallow machine learning algorithm, e.g., linear SVM. Furthermore, performance evaluation of a deep CNN with and without an above-mentioned image processing technique is exhibited and benchmarked. We successfully demonstrate a novel application in constructing a deep-structure neural network model for material degradation diagnosis, which is not available in the current literature. |
doi_str_mv | 10.1109/ACCESS.2019.2927162 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8758810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8758810</ieee_id><doaj_id>oai_doaj_org_article_40aa8f961a7a47508e84a722d1f38279</doaj_id><sourcerecordid>2455616644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-5eadf3f2e433d9a2e7810e8bc2db331c1c6aa1ce0d177bf31781632c9191f4283</originalsourceid><addsrcrecordid>eNpNUcFu2zAMNYYVWNH1C3oxsHMyUZIl-Rik3Rag2Q5tzxojUYay1MokB8P-fkpdFOOFDyTfI4nXNDfAlgCs_7xar-8eHpacQb_kPdeg-LvmkoPqF6IT6v1_-ENzXcqe1TC11OnL5ueq_U6njIeapj8p_2q3ydOhDSm3W5wox9q6pSGjxymmseKJ3AvC0be3EYcxlVjapxLHod1Gl1Nx6Rhdu3nGgcrH5iLgodD1a75qnr7cPa6_Le5_fN2sV_cLJ7WcFh2hDyJwkkL4HjlpA4zMznG_EwIcOIUIjpgHrXdBQO0rwV0PPQTJjbhqNrOuT7i3xxyfMf-1CaN9KaQ8WMxTdAeykiGa0CtAjVJ3zJCRqDn3EIThuq9an2atY06_T1Qmu0-nPNbzLZddp0ApKeuUmKfOL5dM4W0rMHt2xs7O2LMz9tWZyrqZWZGI3hhGd6Y-LP4BXDGI1w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455616644</pqid></control><display><type>article</type><title>A Neural Network Model for Material Degradation Detection and Diagnosis Using Microscopic Images</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Choi, Woosung ; Huh, Hyunsuk ; Tama, Bayu Adhi ; Park, Gyusang ; Lee, Seungchul</creator><creatorcontrib>Choi, Woosung ; Huh, Hyunsuk ; Tama, Bayu Adhi ; Park, Gyusang ; Lee, Seungchul</creatorcontrib><description>Detection and diagnosis of material degradation are of a complex and challenging task since it is presently hand-operated by a human. Therefore, it leads to misinterpretation and avoids correct classification and diagnosis. In this paper, we develop a computer-assisted detection method of material failure by utilizing a deep learning approach. A deep convolutional neural network (CNN) model, combined with an image processing technique, e.g., adaptive histogram equalization, is trained to classify a real-world turbine tube degradation image data set, which is retrieved from a power generation company. The experimental result demonstrates the effectiveness of the proposed approach with predictive classification accuracy is up to 99.99% in comparison with a shallow machine learning algorithm, e.g., linear SVM. Furthermore, performance evaluation of a deep CNN with and without an above-mentioned image processing technique is exhibited and benchmarked. We successfully demonstrate a novel application in constructing a deep-structure neural network model for material degradation diagnosis, which is not available in the current literature.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2927162</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; boiler tube ; convolutional neural network ; Convolutional neural networks ; Creep ; creep damage ; Deep learning ; Degradation ; Diagnosis ; Electric power generation ; Equalization ; high temperature ; histogram equalization ; Histograms ; Image classification ; Image degradation ; Image processing ; Machine learning ; Material degradation ; Materials failure ; Neural networks ; Performance evaluation ; Power generation ; Turbines</subject><ispartof>IEEE access, 2019, Vol.7, p.92151-92160</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-5eadf3f2e433d9a2e7810e8bc2db331c1c6aa1ce0d177bf31781632c9191f4283</citedby><cites>FETCH-LOGICAL-c474t-5eadf3f2e433d9a2e7810e8bc2db331c1c6aa1ce0d177bf31781632c9191f4283</cites><orcidid>0000-0002-1821-6438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8758810$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Choi, Woosung</creatorcontrib><creatorcontrib>Huh, Hyunsuk</creatorcontrib><creatorcontrib>Tama, Bayu Adhi</creatorcontrib><creatorcontrib>Park, Gyusang</creatorcontrib><creatorcontrib>Lee, Seungchul</creatorcontrib><title>A Neural Network Model for Material Degradation Detection and Diagnosis Using Microscopic Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>Detection and diagnosis of material degradation are of a complex and challenging task since it is presently hand-operated by a human. Therefore, it leads to misinterpretation and avoids correct classification and diagnosis. In this paper, we develop a computer-assisted detection method of material failure by utilizing a deep learning approach. A deep convolutional neural network (CNN) model, combined with an image processing technique, e.g., adaptive histogram equalization, is trained to classify a real-world turbine tube degradation image data set, which is retrieved from a power generation company. The experimental result demonstrates the effectiveness of the proposed approach with predictive classification accuracy is up to 99.99% in comparison with a shallow machine learning algorithm, e.g., linear SVM. Furthermore, performance evaluation of a deep CNN with and without an above-mentioned image processing technique is exhibited and benchmarked. We successfully demonstrate a novel application in constructing a deep-structure neural network model for material degradation diagnosis, which is not available in the current literature.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>boiler tube</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Creep</subject><subject>creep damage</subject><subject>Deep learning</subject><subject>Degradation</subject><subject>Diagnosis</subject><subject>Electric power generation</subject><subject>Equalization</subject><subject>high temperature</subject><subject>histogram equalization</subject><subject>Histograms</subject><subject>Image classification</subject><subject>Image degradation</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Material degradation</subject><subject>Materials failure</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Power generation</subject><subject>Turbines</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFu2zAMNYYVWNH1C3oxsHMyUZIl-Rik3Rag2Q5tzxojUYay1MokB8P-fkpdFOOFDyTfI4nXNDfAlgCs_7xar-8eHpacQb_kPdeg-LvmkoPqF6IT6v1_-ENzXcqe1TC11OnL5ueq_U6njIeapj8p_2q3ydOhDSm3W5wox9q6pSGjxymmseKJ3AvC0be3EYcxlVjapxLHod1Gl1Nx6Rhdu3nGgcrH5iLgodD1a75qnr7cPa6_Le5_fN2sV_cLJ7WcFh2hDyJwkkL4HjlpA4zMznG_EwIcOIUIjpgHrXdBQO0rwV0PPQTJjbhqNrOuT7i3xxyfMf-1CaN9KaQ8WMxTdAeykiGa0CtAjVJ3zJCRqDn3EIThuq9an2atY06_T1Qmu0-nPNbzLZddp0ApKeuUmKfOL5dM4W0rMHt2xs7O2LMz9tWZyrqZWZGI3hhGd6Y-LP4BXDGI1w</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Choi, Woosung</creator><creator>Huh, Hyunsuk</creator><creator>Tama, Bayu Adhi</creator><creator>Park, Gyusang</creator><creator>Lee, Seungchul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1821-6438</orcidid></search><sort><creationdate>2019</creationdate><title>A Neural Network Model for Material Degradation Detection and Diagnosis Using Microscopic Images</title><author>Choi, Woosung ; Huh, Hyunsuk ; Tama, Bayu Adhi ; Park, Gyusang ; Lee, Seungchul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-5eadf3f2e433d9a2e7810e8bc2db331c1c6aa1ce0d177bf31781632c9191f4283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>boiler tube</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Creep</topic><topic>creep damage</topic><topic>Deep learning</topic><topic>Degradation</topic><topic>Diagnosis</topic><topic>Electric power generation</topic><topic>Equalization</topic><topic>high temperature</topic><topic>histogram equalization</topic><topic>Histograms</topic><topic>Image classification</topic><topic>Image degradation</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Material degradation</topic><topic>Materials failure</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Power generation</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Woosung</creatorcontrib><creatorcontrib>Huh, Hyunsuk</creatorcontrib><creatorcontrib>Tama, Bayu Adhi</creatorcontrib><creatorcontrib>Park, Gyusang</creatorcontrib><creatorcontrib>Lee, Seungchul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Woosung</au><au>Huh, Hyunsuk</au><au>Tama, Bayu Adhi</au><au>Park, Gyusang</au><au>Lee, Seungchul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Neural Network Model for Material Degradation Detection and Diagnosis Using Microscopic Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>92151</spage><epage>92160</epage><pages>92151-92160</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Detection and diagnosis of material degradation are of a complex and challenging task since it is presently hand-operated by a human. Therefore, it leads to misinterpretation and avoids correct classification and diagnosis. In this paper, we develop a computer-assisted detection method of material failure by utilizing a deep learning approach. A deep convolutional neural network (CNN) model, combined with an image processing technique, e.g., adaptive histogram equalization, is trained to classify a real-world turbine tube degradation image data set, which is retrieved from a power generation company. The experimental result demonstrates the effectiveness of the proposed approach with predictive classification accuracy is up to 99.99% in comparison with a shallow machine learning algorithm, e.g., linear SVM. Furthermore, performance evaluation of a deep CNN with and without an above-mentioned image processing technique is exhibited and benchmarked. We successfully demonstrate a novel application in constructing a deep-structure neural network model for material degradation diagnosis, which is not available in the current literature.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2927162</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1821-6438</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.92151-92160 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8758810 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Artificial neural networks boiler tube convolutional neural network Convolutional neural networks Creep creep damage Deep learning Degradation Diagnosis Electric power generation Equalization high temperature histogram equalization Histograms Image classification Image degradation Image processing Machine learning Material degradation Materials failure Neural networks Performance evaluation Power generation Turbines |
title | A Neural Network Model for Material Degradation Detection and Diagnosis Using Microscopic Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Neural%20Network%20Model%20for%20Material%20Degradation%20Detection%20and%20Diagnosis%20Using%20Microscopic%20Images&rft.jtitle=IEEE%20access&rft.au=Choi,%20Woosung&rft.date=2019&rft.volume=7&rft.spage=92151&rft.epage=92160&rft.pages=92151-92160&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2927162&rft_dat=%3Cproquest_ieee_%3E2455616644%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455616644&rft_id=info:pmid/&rft_ieee_id=8758810&rft_doaj_id=oai_doaj_org_article_40aa8f961a7a47508e84a722d1f38279&rfr_iscdi=true |