A Neural Network Model for Material Degradation Detection and Diagnosis Using Microscopic Images

Detection and diagnosis of material degradation are of a complex and challenging task since it is presently hand-operated by a human. Therefore, it leads to misinterpretation and avoids correct classification and diagnosis. In this paper, we develop a computer-assisted detection method of material f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.92151-92160
Hauptverfasser: Choi, Woosung, Huh, Hyunsuk, Tama, Bayu Adhi, Park, Gyusang, Lee, Seungchul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92160
container_issue
container_start_page 92151
container_title IEEE access
container_volume 7
creator Choi, Woosung
Huh, Hyunsuk
Tama, Bayu Adhi
Park, Gyusang
Lee, Seungchul
description Detection and diagnosis of material degradation are of a complex and challenging task since it is presently hand-operated by a human. Therefore, it leads to misinterpretation and avoids correct classification and diagnosis. In this paper, we develop a computer-assisted detection method of material failure by utilizing a deep learning approach. A deep convolutional neural network (CNN) model, combined with an image processing technique, e.g., adaptive histogram equalization, is trained to classify a real-world turbine tube degradation image data set, which is retrieved from a power generation company. The experimental result demonstrates the effectiveness of the proposed approach with predictive classification accuracy is up to 99.99% in comparison with a shallow machine learning algorithm, e.g., linear SVM. Furthermore, performance evaluation of a deep CNN with and without an above-mentioned image processing technique is exhibited and benchmarked. We successfully demonstrate a novel application in constructing a deep-structure neural network model for material degradation diagnosis, which is not available in the current literature.
doi_str_mv 10.1109/ACCESS.2019.2927162
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8758810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8758810</ieee_id><doaj_id>oai_doaj_org_article_40aa8f961a7a47508e84a722d1f38279</doaj_id><sourcerecordid>2455616644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-5eadf3f2e433d9a2e7810e8bc2db331c1c6aa1ce0d177bf31781632c9191f4283</originalsourceid><addsrcrecordid>eNpNUcFu2zAMNYYVWNH1C3oxsHMyUZIl-Rik3Rag2Q5tzxojUYay1MokB8P-fkpdFOOFDyTfI4nXNDfAlgCs_7xar-8eHpacQb_kPdeg-LvmkoPqF6IT6v1_-ENzXcqe1TC11OnL5ueq_U6njIeapj8p_2q3ydOhDSm3W5wox9q6pSGjxymmseKJ3AvC0be3EYcxlVjapxLHod1Gl1Nx6Rhdu3nGgcrH5iLgodD1a75qnr7cPa6_Le5_fN2sV_cLJ7WcFh2hDyJwkkL4HjlpA4zMznG_EwIcOIUIjpgHrXdBQO0rwV0PPQTJjbhqNrOuT7i3xxyfMf-1CaN9KaQ8WMxTdAeykiGa0CtAjVJ3zJCRqDn3EIThuq9an2atY06_T1Qmu0-nPNbzLZddp0ApKeuUmKfOL5dM4W0rMHt2xs7O2LMz9tWZyrqZWZGI3hhGd6Y-LP4BXDGI1w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455616644</pqid></control><display><type>article</type><title>A Neural Network Model for Material Degradation Detection and Diagnosis Using Microscopic Images</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Choi, Woosung ; Huh, Hyunsuk ; Tama, Bayu Adhi ; Park, Gyusang ; Lee, Seungchul</creator><creatorcontrib>Choi, Woosung ; Huh, Hyunsuk ; Tama, Bayu Adhi ; Park, Gyusang ; Lee, Seungchul</creatorcontrib><description>Detection and diagnosis of material degradation are of a complex and challenging task since it is presently hand-operated by a human. Therefore, it leads to misinterpretation and avoids correct classification and diagnosis. In this paper, we develop a computer-assisted detection method of material failure by utilizing a deep learning approach. A deep convolutional neural network (CNN) model, combined with an image processing technique, e.g., adaptive histogram equalization, is trained to classify a real-world turbine tube degradation image data set, which is retrieved from a power generation company. The experimental result demonstrates the effectiveness of the proposed approach with predictive classification accuracy is up to 99.99% in comparison with a shallow machine learning algorithm, e.g., linear SVM. Furthermore, performance evaluation of a deep CNN with and without an above-mentioned image processing technique is exhibited and benchmarked. We successfully demonstrate a novel application in constructing a deep-structure neural network model for material degradation diagnosis, which is not available in the current literature.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2927162</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; boiler tube ; convolutional neural network ; Convolutional neural networks ; Creep ; creep damage ; Deep learning ; Degradation ; Diagnosis ; Electric power generation ; Equalization ; high temperature ; histogram equalization ; Histograms ; Image classification ; Image degradation ; Image processing ; Machine learning ; Material degradation ; Materials failure ; Neural networks ; Performance evaluation ; Power generation ; Turbines</subject><ispartof>IEEE access, 2019, Vol.7, p.92151-92160</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-5eadf3f2e433d9a2e7810e8bc2db331c1c6aa1ce0d177bf31781632c9191f4283</citedby><cites>FETCH-LOGICAL-c474t-5eadf3f2e433d9a2e7810e8bc2db331c1c6aa1ce0d177bf31781632c9191f4283</cites><orcidid>0000-0002-1821-6438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8758810$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Choi, Woosung</creatorcontrib><creatorcontrib>Huh, Hyunsuk</creatorcontrib><creatorcontrib>Tama, Bayu Adhi</creatorcontrib><creatorcontrib>Park, Gyusang</creatorcontrib><creatorcontrib>Lee, Seungchul</creatorcontrib><title>A Neural Network Model for Material Degradation Detection and Diagnosis Using Microscopic Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>Detection and diagnosis of material degradation are of a complex and challenging task since it is presently hand-operated by a human. Therefore, it leads to misinterpretation and avoids correct classification and diagnosis. In this paper, we develop a computer-assisted detection method of material failure by utilizing a deep learning approach. A deep convolutional neural network (CNN) model, combined with an image processing technique, e.g., adaptive histogram equalization, is trained to classify a real-world turbine tube degradation image data set, which is retrieved from a power generation company. The experimental result demonstrates the effectiveness of the proposed approach with predictive classification accuracy is up to 99.99% in comparison with a shallow machine learning algorithm, e.g., linear SVM. Furthermore, performance evaluation of a deep CNN with and without an above-mentioned image processing technique is exhibited and benchmarked. We successfully demonstrate a novel application in constructing a deep-structure neural network model for material degradation diagnosis, which is not available in the current literature.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>boiler tube</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Creep</subject><subject>creep damage</subject><subject>Deep learning</subject><subject>Degradation</subject><subject>Diagnosis</subject><subject>Electric power generation</subject><subject>Equalization</subject><subject>high temperature</subject><subject>histogram equalization</subject><subject>Histograms</subject><subject>Image classification</subject><subject>Image degradation</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Material degradation</subject><subject>Materials failure</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Power generation</subject><subject>Turbines</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFu2zAMNYYVWNH1C3oxsHMyUZIl-Rik3Rag2Q5tzxojUYay1MokB8P-fkpdFOOFDyTfI4nXNDfAlgCs_7xar-8eHpacQb_kPdeg-LvmkoPqF6IT6v1_-ENzXcqe1TC11OnL5ueq_U6njIeapj8p_2q3ydOhDSm3W5wox9q6pSGjxymmseKJ3AvC0be3EYcxlVjapxLHod1Gl1Nx6Rhdu3nGgcrH5iLgodD1a75qnr7cPa6_Le5_fN2sV_cLJ7WcFh2hDyJwkkL4HjlpA4zMznG_EwIcOIUIjpgHrXdBQO0rwV0PPQTJjbhqNrOuT7i3xxyfMf-1CaN9KaQ8WMxTdAeykiGa0CtAjVJ3zJCRqDn3EIThuq9an2atY06_T1Qmu0-nPNbzLZddp0ApKeuUmKfOL5dM4W0rMHt2xs7O2LMz9tWZyrqZWZGI3hhGd6Y-LP4BXDGI1w</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Choi, Woosung</creator><creator>Huh, Hyunsuk</creator><creator>Tama, Bayu Adhi</creator><creator>Park, Gyusang</creator><creator>Lee, Seungchul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1821-6438</orcidid></search><sort><creationdate>2019</creationdate><title>A Neural Network Model for Material Degradation Detection and Diagnosis Using Microscopic Images</title><author>Choi, Woosung ; Huh, Hyunsuk ; Tama, Bayu Adhi ; Park, Gyusang ; Lee, Seungchul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-5eadf3f2e433d9a2e7810e8bc2db331c1c6aa1ce0d177bf31781632c9191f4283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>boiler tube</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Creep</topic><topic>creep damage</topic><topic>Deep learning</topic><topic>Degradation</topic><topic>Diagnosis</topic><topic>Electric power generation</topic><topic>Equalization</topic><topic>high temperature</topic><topic>histogram equalization</topic><topic>Histograms</topic><topic>Image classification</topic><topic>Image degradation</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Material degradation</topic><topic>Materials failure</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Power generation</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Woosung</creatorcontrib><creatorcontrib>Huh, Hyunsuk</creatorcontrib><creatorcontrib>Tama, Bayu Adhi</creatorcontrib><creatorcontrib>Park, Gyusang</creatorcontrib><creatorcontrib>Lee, Seungchul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Woosung</au><au>Huh, Hyunsuk</au><au>Tama, Bayu Adhi</au><au>Park, Gyusang</au><au>Lee, Seungchul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Neural Network Model for Material Degradation Detection and Diagnosis Using Microscopic Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>92151</spage><epage>92160</epage><pages>92151-92160</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Detection and diagnosis of material degradation are of a complex and challenging task since it is presently hand-operated by a human. Therefore, it leads to misinterpretation and avoids correct classification and diagnosis. In this paper, we develop a computer-assisted detection method of material failure by utilizing a deep learning approach. A deep convolutional neural network (CNN) model, combined with an image processing technique, e.g., adaptive histogram equalization, is trained to classify a real-world turbine tube degradation image data set, which is retrieved from a power generation company. The experimental result demonstrates the effectiveness of the proposed approach with predictive classification accuracy is up to 99.99% in comparison with a shallow machine learning algorithm, e.g., linear SVM. Furthermore, performance evaluation of a deep CNN with and without an above-mentioned image processing technique is exhibited and benchmarked. We successfully demonstrate a novel application in constructing a deep-structure neural network model for material degradation diagnosis, which is not available in the current literature.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2927162</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1821-6438</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.92151-92160
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8758810
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Artificial neural networks
boiler tube
convolutional neural network
Convolutional neural networks
Creep
creep damage
Deep learning
Degradation
Diagnosis
Electric power generation
Equalization
high temperature
histogram equalization
Histograms
Image classification
Image degradation
Image processing
Machine learning
Material degradation
Materials failure
Neural networks
Performance evaluation
Power generation
Turbines
title A Neural Network Model for Material Degradation Detection and Diagnosis Using Microscopic Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Neural%20Network%20Model%20for%20Material%20Degradation%20Detection%20and%20Diagnosis%20Using%20Microscopic%20Images&rft.jtitle=IEEE%20access&rft.au=Choi,%20Woosung&rft.date=2019&rft.volume=7&rft.spage=92151&rft.epage=92160&rft.pages=92151-92160&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2927162&rft_dat=%3Cproquest_ieee_%3E2455616644%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455616644&rft_id=info:pmid/&rft_ieee_id=8758810&rft_doaj_id=oai_doaj_org_article_40aa8f961a7a47508e84a722d1f38279&rfr_iscdi=true