Efficiency Measurement of Cloud Service Providers Using Network Data Envelopment Analysis
An increasing number of organizations and businesses around the world use cloud computing services to improve their performance in the competitive marketplace. However, one of the biggest challenges in using cloud computing services is performance measurement and the selection of the best cloud serv...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cloud computing 2022-01, Vol.10 (1), p.348-355 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355 |
---|---|
container_issue | 1 |
container_start_page | 348 |
container_title | IEEE transactions on cloud computing |
container_volume | 10 |
creator | Azadi, Majid Emrouznejad, Ali Ramezani, Fahimeh Hussain, Farookh Khadeer |
description | An increasing number of organizations and businesses around the world use cloud computing services to improve their performance in the competitive marketplace. However, one of the biggest challenges in using cloud computing services is performance measurement and the selection of the best cloud service providers (CSPs) based on quality of service (QoS) requirements [13] . To address this shortcoming in this article we propose a network data envelopment analysis (DEA) method in measuring the efficiency of CSPs. When network dimensions are taken into consideration, a more comprehensive analysis is enabled where divisional efficiency is reflected in overall efficiency estimates. This helps managers and decision makers in organizations to make accurate decisions in selecting cloud services. In the current study, the non-oriented network slacks-based measure (SBM) model and conventional SBM model with the assumptions of constant returns to scale (CRS) and variable returns to scale (VRS) are applied to measure the performance of 18 CSPs. The obtained results show the superiority of the network DEA model and they also demonstrate that the proposed model can evaluate and rank CSPs much better than compared to traditional DEA models. |
doi_str_mv | 10.1109/TCC.2019.2927340 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8758137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8758137</ieee_id><sourcerecordid>2637439976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-5c256a1ba4aa026df8143f5d8df565e65a25b8cf57e16f094ddf391d684484853</originalsourceid><addsrcrecordid>eNo9kEtLw0AURgdRsGj3gpsB16nzfixLrA-oD7BduBqmyR1JbZM6k1T6701t8W6-uzjf5XIQuqJkRCmxt7M8HzFC7YhZprkgJ2jAuGYZIdSc9jtVJtNU0XM0TGlJ-jGSWmoH6GMSQlVUUBc7_Aw-dRHWULe4CThfNV2J3yFuqwLwW2y2VQkx4Xmq6k_8Au1PE7_wnW89ntRbWDWbv-a49qtdqtIlOgt-lWB4zAs0v5_M8sds-vrwlI-nWcE5bzNZMKk8XXjhPWGqDIYKHmRpyiCVBCU9kwtTBKmBqkCsKMvALS2VEcIII_kFujnc3cTmu4PUumXTxf6J5JjiWnBrteopcqCK2KQUIbhNrNY-7hwlbu_Q9Q7d3qE7Ouwr14dKBQD_uNHSUK75L6kmbMc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637439976</pqid></control><display><type>article</type><title>Efficiency Measurement of Cloud Service Providers Using Network Data Envelopment Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Azadi, Majid ; Emrouznejad, Ali ; Ramezani, Fahimeh ; Hussain, Farookh Khadeer</creator><creatorcontrib>Azadi, Majid ; Emrouznejad, Ali ; Ramezani, Fahimeh ; Hussain, Farookh Khadeer</creatorcontrib><description>An increasing number of organizations and businesses around the world use cloud computing services to improve their performance in the competitive marketplace. However, one of the biggest challenges in using cloud computing services is performance measurement and the selection of the best cloud service providers (CSPs) based on quality of service (QoS) requirements <xref ref-type="bibr" rid="ref13">[13] . To address this shortcoming in this article we propose a network data envelopment analysis (DEA) method in measuring the efficiency of CSPs. When network dimensions are taken into consideration, a more comprehensive analysis is enabled where divisional efficiency is reflected in overall efficiency estimates. This helps managers and decision makers in organizations to make accurate decisions in selecting cloud services. In the current study, the non-oriented network slacks-based measure (SBM) model and conventional SBM model with the assumptions of constant returns to scale (CRS) and variable returns to scale (VRS) are applied to measure the performance of 18 CSPs. The obtained results show the superiority of the network DEA model and they also demonstrate that the proposed model can evaluate and rank CSPs much better than compared to traditional DEA models.</description><identifier>ISSN: 2168-7161</identifier><identifier>EISSN: 2372-0018</identifier><identifier>DOI: 10.1109/TCC.2019.2927340</identifier><identifier>CODEN: ITCCF6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Cloud computing ; Cloud service providers (CSPs) ; Computational modeling ; Data analysis ; Data envelopment analysis ; Efficiency ; efficiency measurement ; Information technology ; Measurement ; network slacks-based measure (SBM) model ; Organizations ; Performance evaluation ; Performance measurement ; performance measures ; Quality of service</subject><ispartof>IEEE transactions on cloud computing, 2022-01, Vol.10 (1), p.348-355</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-5c256a1ba4aa026df8143f5d8df565e65a25b8cf57e16f094ddf391d684484853</citedby><cites>FETCH-LOGICAL-c333t-5c256a1ba4aa026df8143f5d8df565e65a25b8cf57e16f094ddf391d684484853</cites><orcidid>0000-0001-8094-4244 ; 0000-0002-0368-321X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8758137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8758137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Azadi, Majid</creatorcontrib><creatorcontrib>Emrouznejad, Ali</creatorcontrib><creatorcontrib>Ramezani, Fahimeh</creatorcontrib><creatorcontrib>Hussain, Farookh Khadeer</creatorcontrib><title>Efficiency Measurement of Cloud Service Providers Using Network Data Envelopment Analysis</title><title>IEEE transactions on cloud computing</title><addtitle>TCC</addtitle><description>An increasing number of organizations and businesses around the world use cloud computing services to improve their performance in the competitive marketplace. However, one of the biggest challenges in using cloud computing services is performance measurement and the selection of the best cloud service providers (CSPs) based on quality of service (QoS) requirements <xref ref-type="bibr" rid="ref13">[13] . To address this shortcoming in this article we propose a network data envelopment analysis (DEA) method in measuring the efficiency of CSPs. When network dimensions are taken into consideration, a more comprehensive analysis is enabled where divisional efficiency is reflected in overall efficiency estimates. This helps managers and decision makers in organizations to make accurate decisions in selecting cloud services. In the current study, the non-oriented network slacks-based measure (SBM) model and conventional SBM model with the assumptions of constant returns to scale (CRS) and variable returns to scale (VRS) are applied to measure the performance of 18 CSPs. The obtained results show the superiority of the network DEA model and they also demonstrate that the proposed model can evaluate and rank CSPs much better than compared to traditional DEA models.</description><subject>Analytical models</subject><subject>Cloud computing</subject><subject>Cloud service providers (CSPs)</subject><subject>Computational modeling</subject><subject>Data analysis</subject><subject>Data envelopment analysis</subject><subject>Efficiency</subject><subject>efficiency measurement</subject><subject>Information technology</subject><subject>Measurement</subject><subject>network slacks-based measure (SBM) model</subject><subject>Organizations</subject><subject>Performance evaluation</subject><subject>Performance measurement</subject><subject>performance measures</subject><subject>Quality of service</subject><issn>2168-7161</issn><issn>2372-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AURgdRsGj3gpsB16nzfixLrA-oD7BduBqmyR1JbZM6k1T6701t8W6-uzjf5XIQuqJkRCmxt7M8HzFC7YhZprkgJ2jAuGYZIdSc9jtVJtNU0XM0TGlJ-jGSWmoH6GMSQlVUUBc7_Aw-dRHWULe4CThfNV2J3yFuqwLwW2y2VQkx4Xmq6k_8Au1PE7_wnW89ntRbWDWbv-a49qtdqtIlOgt-lWB4zAs0v5_M8sds-vrwlI-nWcE5bzNZMKk8XXjhPWGqDIYKHmRpyiCVBCU9kwtTBKmBqkCsKMvALS2VEcIII_kFujnc3cTmu4PUumXTxf6J5JjiWnBrteopcqCK2KQUIbhNrNY-7hwlbu_Q9Q7d3qE7Ouwr14dKBQD_uNHSUK75L6kmbMc</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Azadi, Majid</creator><creator>Emrouznejad, Ali</creator><creator>Ramezani, Fahimeh</creator><creator>Hussain, Farookh Khadeer</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8094-4244</orcidid><orcidid>https://orcid.org/0000-0002-0368-321X</orcidid></search><sort><creationdate>202201</creationdate><title>Efficiency Measurement of Cloud Service Providers Using Network Data Envelopment Analysis</title><author>Azadi, Majid ; Emrouznejad, Ali ; Ramezani, Fahimeh ; Hussain, Farookh Khadeer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-5c256a1ba4aa026df8143f5d8df565e65a25b8cf57e16f094ddf391d684484853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical models</topic><topic>Cloud computing</topic><topic>Cloud service providers (CSPs)</topic><topic>Computational modeling</topic><topic>Data analysis</topic><topic>Data envelopment analysis</topic><topic>Efficiency</topic><topic>efficiency measurement</topic><topic>Information technology</topic><topic>Measurement</topic><topic>network slacks-based measure (SBM) model</topic><topic>Organizations</topic><topic>Performance evaluation</topic><topic>Performance measurement</topic><topic>performance measures</topic><topic>Quality of service</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azadi, Majid</creatorcontrib><creatorcontrib>Emrouznejad, Ali</creatorcontrib><creatorcontrib>Ramezani, Fahimeh</creatorcontrib><creatorcontrib>Hussain, Farookh Khadeer</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cloud computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Azadi, Majid</au><au>Emrouznejad, Ali</au><au>Ramezani, Fahimeh</au><au>Hussain, Farookh Khadeer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficiency Measurement of Cloud Service Providers Using Network Data Envelopment Analysis</atitle><jtitle>IEEE transactions on cloud computing</jtitle><stitle>TCC</stitle><date>2022-01</date><risdate>2022</risdate><volume>10</volume><issue>1</issue><spage>348</spage><epage>355</epage><pages>348-355</pages><issn>2168-7161</issn><eissn>2372-0018</eissn><coden>ITCCF6</coden><abstract>An increasing number of organizations and businesses around the world use cloud computing services to improve their performance in the competitive marketplace. However, one of the biggest challenges in using cloud computing services is performance measurement and the selection of the best cloud service providers (CSPs) based on quality of service (QoS) requirements <xref ref-type="bibr" rid="ref13">[13] . To address this shortcoming in this article we propose a network data envelopment analysis (DEA) method in measuring the efficiency of CSPs. When network dimensions are taken into consideration, a more comprehensive analysis is enabled where divisional efficiency is reflected in overall efficiency estimates. This helps managers and decision makers in organizations to make accurate decisions in selecting cloud services. In the current study, the non-oriented network slacks-based measure (SBM) model and conventional SBM model with the assumptions of constant returns to scale (CRS) and variable returns to scale (VRS) are applied to measure the performance of 18 CSPs. The obtained results show the superiority of the network DEA model and they also demonstrate that the proposed model can evaluate and rank CSPs much better than compared to traditional DEA models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCC.2019.2927340</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8094-4244</orcidid><orcidid>https://orcid.org/0000-0002-0368-321X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-7161 |
ispartof | IEEE transactions on cloud computing, 2022-01, Vol.10 (1), p.348-355 |
issn | 2168-7161 2372-0018 |
language | eng |
recordid | cdi_ieee_primary_8758137 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Cloud computing Cloud service providers (CSPs) Computational modeling Data analysis Data envelopment analysis Efficiency efficiency measurement Information technology Measurement network slacks-based measure (SBM) model Organizations Performance evaluation Performance measurement performance measures Quality of service |
title | Efficiency Measurement of Cloud Service Providers Using Network Data Envelopment Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficiency%20Measurement%20of%20Cloud%20Service%20Providers%20Using%20Network%20Data%20Envelopment%20Analysis&rft.jtitle=IEEE%20transactions%20on%20cloud%20computing&rft.au=Azadi,%20Majid&rft.date=2022-01&rft.volume=10&rft.issue=1&rft.spage=348&rft.epage=355&rft.pages=348-355&rft.issn=2168-7161&rft.eissn=2372-0018&rft.coden=ITCCF6&rft_id=info:doi/10.1109/TCC.2019.2927340&rft_dat=%3Cproquest_RIE%3E2637439976%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637439976&rft_id=info:pmid/&rft_ieee_id=8758137&rfr_iscdi=true |