Study of Sensitivity to Weight Perturbation for Convolution Neural Network
Exploring underlying properties of a neural network contributes to pursuing its internal behavior and functionality. For convolution neural networks (CNNs), a sensitivity measure to weight perturbation is introduced in this paper to reflect the extent of the network output variation, which could eva...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.93898-93908 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93908 |
---|---|
container_issue | |
container_start_page | 93898 |
container_title | IEEE access |
container_volume | 7 |
creator | Xiang, Lin Zeng, Xiaoqin Niu, Yuhu Liu, Yanjun |
description | Exploring underlying properties of a neural network contributes to pursuing its internal behavior and functionality. For convolution neural networks (CNNs), a sensitivity measure to weight perturbation is introduced in this paper to reflect the extent of the network output variation, which could evaluate the effect of the weights on the network. The sensitivity is defined as the mathematical expectation of absolute output variation due to weight perturbation with respect to all possible inputs. Assuming that the conditional distribution of input obeys the normal, the sensitivity is iteratively computed layer to layer until the entire network. Without loss of generality, the paper proposes an approximate algorithm to compute a theoretical sensitivity, which is actually a function of mapping between the network's output variation and its weight perturbation. The experimental results demonstrate the coincidence of the computed theoretical sensitivity with the simulated actual output variation of the network. Thus a criterion can be established to evaluate the influence of weights on CNNs' output. |
doi_str_mv | 10.1109/ACCESS.2019.2926768 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8755296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8755296</ieee_id><doaj_id>oai_doaj_org_article_0765e2b6035c4735b2dc09c71ea33c8a</doaj_id><sourcerecordid>2455638299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-405d99fb5cb4f68e474a768a3233e970b9453f9478e0e1ae549a1ccb12419d293</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaKg1P4CLwueW_OdzVGWqpWiQhWPIZud1dTa1Gy20n_vtluKc3kzw7z3Bh5CVwSPCcH65rYoJvP5mGKix1RTqWR-gi4okXrEBJOn__pzNGyaBe4q71ZCXaDHeWqrbRbqbA6rxie_8WmbpZC9g__4TNkLxNTG0iYfVlkdYlaE1SYs2_38BG20yw7Sb4hfl-istssGhgccoLe7yWvxMJo930-L29nIMZGnEcei0rouhSt5LXPgitvuZcsoY6AVLjUXrNZc5YCBWBBcW-JcSSgnuqKaDdC0162CXZh19N82bk2w3uwXIX4YG5N3SzBYSQG0lJgJxxUTJa0c1k4RsIy5znOArnutdQw_LTTJLEIbV937hnIhJMup3jmy_srF0DQR6qMrwWaXgekzMLsMzCGDjnXVszwAHBm5EoJqyf4ADbSBsQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455638299</pqid></control><display><type>article</type><title>Study of Sensitivity to Weight Perturbation for Convolution Neural Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xiang, Lin ; Zeng, Xiaoqin ; Niu, Yuhu ; Liu, Yanjun</creator><creatorcontrib>Xiang, Lin ; Zeng, Xiaoqin ; Niu, Yuhu ; Liu, Yanjun</creatorcontrib><description>Exploring underlying properties of a neural network contributes to pursuing its internal behavior and functionality. For convolution neural networks (CNNs), a sensitivity measure to weight perturbation is introduced in this paper to reflect the extent of the network output variation, which could evaluate the effect of the weights on the network. The sensitivity is defined as the mathematical expectation of absolute output variation due to weight perturbation with respect to all possible inputs. Assuming that the conditional distribution of input obeys the normal, the sensitivity is iteratively computed layer to layer until the entire network. Without loss of generality, the paper proposes an approximate algorithm to compute a theoretical sensitivity, which is actually a function of mapping between the network's output variation and its weight perturbation. The experimental results demonstrate the coincidence of the computed theoretical sensitivity with the simulated actual output variation of the network. Thus a criterion can be established to evaluate the influence of weights on CNNs' output.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2926768</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Computation ; Convolution ; Convolutional neural network ; Evaluation ; Feature extraction ; Kernel ; Neural networks ; Neurons ; Perturbation ; Perturbation methods ; Sensitivity ; Weight ; weight perturbation</subject><ispartof>IEEE access, 2019, Vol.7, p.93898-93908</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-405d99fb5cb4f68e474a768a3233e970b9453f9478e0e1ae549a1ccb12419d293</cites><orcidid>0000-0003-1230-3757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8755296$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Xiang, Lin</creatorcontrib><creatorcontrib>Zeng, Xiaoqin</creatorcontrib><creatorcontrib>Niu, Yuhu</creatorcontrib><creatorcontrib>Liu, Yanjun</creatorcontrib><title>Study of Sensitivity to Weight Perturbation for Convolution Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>Exploring underlying properties of a neural network contributes to pursuing its internal behavior and functionality. For convolution neural networks (CNNs), a sensitivity measure to weight perturbation is introduced in this paper to reflect the extent of the network output variation, which could evaluate the effect of the weights on the network. The sensitivity is defined as the mathematical expectation of absolute output variation due to weight perturbation with respect to all possible inputs. Assuming that the conditional distribution of input obeys the normal, the sensitivity is iteratively computed layer to layer until the entire network. Without loss of generality, the paper proposes an approximate algorithm to compute a theoretical sensitivity, which is actually a function of mapping between the network's output variation and its weight perturbation. The experimental results demonstrate the coincidence of the computed theoretical sensitivity with the simulated actual output variation of the network. Thus a criterion can be established to evaluate the influence of weights on CNNs' output.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computation</subject><subject>Convolution</subject><subject>Convolutional neural network</subject><subject>Evaluation</subject><subject>Feature extraction</subject><subject>Kernel</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Sensitivity</subject><subject>Weight</subject><subject>weight perturbation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQDaKg1P4CLwueW_OdzVGWqpWiQhWPIZud1dTa1Gy20n_vtluKc3kzw7z3Bh5CVwSPCcH65rYoJvP5mGKix1RTqWR-gi4okXrEBJOn__pzNGyaBe4q71ZCXaDHeWqrbRbqbA6rxie_8WmbpZC9g__4TNkLxNTG0iYfVlkdYlaE1SYs2_38BG20yw7Sb4hfl-istssGhgccoLe7yWvxMJo930-L29nIMZGnEcei0rouhSt5LXPgitvuZcsoY6AVLjUXrNZc5YCBWBBcW-JcSSgnuqKaDdC0162CXZh19N82bk2w3uwXIX4YG5N3SzBYSQG0lJgJxxUTJa0c1k4RsIy5znOArnutdQw_LTTJLEIbV937hnIhJMup3jmy_srF0DQR6qMrwWaXgekzMLsMzCGDjnXVszwAHBm5EoJqyf4ADbSBsQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Xiang, Lin</creator><creator>Zeng, Xiaoqin</creator><creator>Niu, Yuhu</creator><creator>Liu, Yanjun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1230-3757</orcidid></search><sort><creationdate>2019</creationdate><title>Study of Sensitivity to Weight Perturbation for Convolution Neural Network</title><author>Xiang, Lin ; Zeng, Xiaoqin ; Niu, Yuhu ; Liu, Yanjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-405d99fb5cb4f68e474a768a3233e970b9453f9478e0e1ae549a1ccb12419d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computation</topic><topic>Convolution</topic><topic>Convolutional neural network</topic><topic>Evaluation</topic><topic>Feature extraction</topic><topic>Kernel</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Sensitivity</topic><topic>Weight</topic><topic>weight perturbation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Lin</creatorcontrib><creatorcontrib>Zeng, Xiaoqin</creatorcontrib><creatorcontrib>Niu, Yuhu</creatorcontrib><creatorcontrib>Liu, Yanjun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Lin</au><au>Zeng, Xiaoqin</au><au>Niu, Yuhu</au><au>Liu, Yanjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Sensitivity to Weight Perturbation for Convolution Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>93898</spage><epage>93908</epage><pages>93898-93908</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Exploring underlying properties of a neural network contributes to pursuing its internal behavior and functionality. For convolution neural networks (CNNs), a sensitivity measure to weight perturbation is introduced in this paper to reflect the extent of the network output variation, which could evaluate the effect of the weights on the network. The sensitivity is defined as the mathematical expectation of absolute output variation due to weight perturbation with respect to all possible inputs. Assuming that the conditional distribution of input obeys the normal, the sensitivity is iteratively computed layer to layer until the entire network. Without loss of generality, the paper proposes an approximate algorithm to compute a theoretical sensitivity, which is actually a function of mapping between the network's output variation and its weight perturbation. The experimental results demonstrate the coincidence of the computed theoretical sensitivity with the simulated actual output variation of the network. Thus a criterion can be established to evaluate the influence of weights on CNNs' output.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2926768</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1230-3757</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.93898-93908 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8755296 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial neural networks Computation Convolution Convolutional neural network Evaluation Feature extraction Kernel Neural networks Neurons Perturbation Perturbation methods Sensitivity Weight weight perturbation |
title | Study of Sensitivity to Weight Perturbation for Convolution Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Sensitivity%20to%20Weight%20Perturbation%20for%20Convolution%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Xiang,%20Lin&rft.date=2019&rft.volume=7&rft.spage=93898&rft.epage=93908&rft.pages=93898-93908&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2926768&rft_dat=%3Cproquest_ieee_%3E2455638299%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455638299&rft_id=info:pmid/&rft_ieee_id=8755296&rft_doaj_id=oai_doaj_org_article_0765e2b6035c4735b2dc09c71ea33c8a&rfr_iscdi=true |