A Stochastic Data-Based Traffic Model Applied to Vehicles Energy Consumption Estimation

A new approach to estimate traffic energy consumption via traffic data aggregation in (speed and acceleration) probability distributions is proposed. The aggregation is done on each segment composing the road network. In order to reduce data occupancy, clustering techniques are used to obtain meanin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2020-07, Vol.21 (7), p.3025-3034
Hauptverfasser: Le Rhun, Arthur, Bonnans, Frederic, De Nunzio, Giovanni, Leroy, Thomas, Martinon, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3034
container_issue 7
container_start_page 3025
container_title IEEE transactions on intelligent transportation systems
container_volume 21
creator Le Rhun, Arthur
Bonnans, Frederic
De Nunzio, Giovanni
Leroy, Thomas
Martinon, Pierre
description A new approach to estimate traffic energy consumption via traffic data aggregation in (speed and acceleration) probability distributions is proposed. The aggregation is done on each segment composing the road network. In order to reduce data occupancy, clustering techniques are used to obtain meaningful classes of traffic conditions. Different times of the day with similar speed patterns and traffic behavior are thus grouped together in a single cluster. Different energy consumption models based on the aggregated data are proposed to estimate the energy consumption of the vehicles in the road network. For validation purposes, a microscopic traffic simulator is used to generate the data and compare the estimated energy consumption to the measured one. A thorough sensitivity analysis with respect to the parameters of the proposed method (i.e., number of clusters and size of the distributions support) is also conducted in simulation. Finally, a real-life scenario using floating car data is analyzed to evaluate the applicability and the robustness of the proposed method.
doi_str_mv 10.1109/TITS.2019.2923292
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8750810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8750810</ieee_id><sourcerecordid>2419496115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-fb1fd5c8f17fd7249cbc1d23d870db356a2df39c8c0c9c1cfec7a2086bf67bcd3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWKs_QLwEPHlI3dl8bPYYa7WFiodGPS6b_bApaTbupkL_vRtSPAwzvDzzzvAGwS2gGQCij-Wq3MwwAjrDFMe-zoIJpGkeIQTZ-TDjJKIoRZfBlXM7ryYpwCT4KsJNb8SWu74W4TPvefTEnZJhabnWXnozUjVh0XVN7dXehJ9qW4tGuXDRKvt9DOemdYd919emDRfeZc-H8Tq40Lxx6ubUp8HHy6KcL6P1--tqXqwjERPUR7oCLVORayBaEpxQUQmQOJY5QbKK04xjqWMqcoEEFSC0EoRjlGeVzkglZDwNHkbfLW9YZ_11e2SG12xZrNmgISAkyTD8xp69H9nOmp-Dcj3bmYNt_XsMJ0ATmgGknoKREtY4Z5X-twXEhqzZkDUbsmanrP3O3bhTK6X--ZykKAcU_wHcfnqO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419496115</pqid></control><display><type>article</type><title>A Stochastic Data-Based Traffic Model Applied to Vehicles Energy Consumption Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Le Rhun, Arthur ; Bonnans, Frederic ; De Nunzio, Giovanni ; Leroy, Thomas ; Martinon, Pierre</creator><creatorcontrib>Le Rhun, Arthur ; Bonnans, Frederic ; De Nunzio, Giovanni ; Leroy, Thomas ; Martinon, Pierre</creatorcontrib><description>A new approach to estimate traffic energy consumption via traffic data aggregation in (speed and acceleration) probability distributions is proposed. The aggregation is done on each segment composing the road network. In order to reduce data occupancy, clustering techniques are used to obtain meaningful classes of traffic conditions. Different times of the day with similar speed patterns and traffic behavior are thus grouped together in a single cluster. Different energy consumption models based on the aggregated data are proposed to estimate the energy consumption of the vehicles in the road network. For validation purposes, a microscopic traffic simulator is used to generate the data and compare the estimated energy consumption to the measured one. A thorough sensitivity analysis with respect to the parameters of the proposed method (i.e., number of clusters and size of the distributions support) is also conducted in simulation. Finally, a real-life scenario using floating car data is analyzed to evaluate the applicability and the robustness of the proposed method.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2019.2923292</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Agglomeration ; Clustering ; Clustering algorithms ; Computational modeling ; Computer simulation ; Data management ; Data models ; Driving conditions ; Energy consumption ; Estimation ; Mathematics ; Occupancy ; Optimization and Control ; Parameter sensitivity ; Roads ; Sensitivity analysis ; Traffic ; Traffic information ; Traffic modeling ; Traffic models ; Traffic speed ; Transportation networks</subject><ispartof>IEEE transactions on intelligent transportation systems, 2020-07, Vol.21 (7), p.3025-3034</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-fb1fd5c8f17fd7249cbc1d23d870db356a2df39c8c0c9c1cfec7a2086bf67bcd3</citedby><cites>FETCH-LOGICAL-c370t-fb1fd5c8f17fd7249cbc1d23d870db356a2df39c8c0c9c1cfec7a2086bf67bcd3</cites><orcidid>0000-0002-1734-434X ; 0000-0003-0571-2376 ; 0000-0003-1179-8735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8750810$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8750810$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://inria.hal.science/hal-01774621$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Le Rhun, Arthur</creatorcontrib><creatorcontrib>Bonnans, Frederic</creatorcontrib><creatorcontrib>De Nunzio, Giovanni</creatorcontrib><creatorcontrib>Leroy, Thomas</creatorcontrib><creatorcontrib>Martinon, Pierre</creatorcontrib><title>A Stochastic Data-Based Traffic Model Applied to Vehicles Energy Consumption Estimation</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>A new approach to estimate traffic energy consumption via traffic data aggregation in (speed and acceleration) probability distributions is proposed. The aggregation is done on each segment composing the road network. In order to reduce data occupancy, clustering techniques are used to obtain meaningful classes of traffic conditions. Different times of the day with similar speed patterns and traffic behavior are thus grouped together in a single cluster. Different energy consumption models based on the aggregated data are proposed to estimate the energy consumption of the vehicles in the road network. For validation purposes, a microscopic traffic simulator is used to generate the data and compare the estimated energy consumption to the measured one. A thorough sensitivity analysis with respect to the parameters of the proposed method (i.e., number of clusters and size of the distributions support) is also conducted in simulation. Finally, a real-life scenario using floating car data is analyzed to evaluate the applicability and the robustness of the proposed method.</description><subject>Acceleration</subject><subject>Agglomeration</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Data management</subject><subject>Data models</subject><subject>Driving conditions</subject><subject>Energy consumption</subject><subject>Estimation</subject><subject>Mathematics</subject><subject>Occupancy</subject><subject>Optimization and Control</subject><subject>Parameter sensitivity</subject><subject>Roads</subject><subject>Sensitivity analysis</subject><subject>Traffic</subject><subject>Traffic information</subject><subject>Traffic modeling</subject><subject>Traffic models</subject><subject>Traffic speed</subject><subject>Transportation networks</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhoMoWKs_QLwEPHlI3dl8bPYYa7WFiodGPS6b_bApaTbupkL_vRtSPAwzvDzzzvAGwS2gGQCij-Wq3MwwAjrDFMe-zoIJpGkeIQTZ-TDjJKIoRZfBlXM7ryYpwCT4KsJNb8SWu74W4TPvefTEnZJhabnWXnozUjVh0XVN7dXehJ9qW4tGuXDRKvt9DOemdYd919emDRfeZc-H8Tq40Lxx6ubUp8HHy6KcL6P1--tqXqwjERPUR7oCLVORayBaEpxQUQmQOJY5QbKK04xjqWMqcoEEFSC0EoRjlGeVzkglZDwNHkbfLW9YZ_11e2SG12xZrNmgISAkyTD8xp69H9nOmp-Dcj3bmYNt_XsMJ0ATmgGknoKREtY4Z5X-twXEhqzZkDUbsmanrP3O3bhTK6X--ZykKAcU_wHcfnqO</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Le Rhun, Arthur</creator><creator>Bonnans, Frederic</creator><creator>De Nunzio, Giovanni</creator><creator>Leroy, Thomas</creator><creator>Martinon, Pierre</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1734-434X</orcidid><orcidid>https://orcid.org/0000-0003-0571-2376</orcidid><orcidid>https://orcid.org/0000-0003-1179-8735</orcidid></search><sort><creationdate>20200701</creationdate><title>A Stochastic Data-Based Traffic Model Applied to Vehicles Energy Consumption Estimation</title><author>Le Rhun, Arthur ; Bonnans, Frederic ; De Nunzio, Giovanni ; Leroy, Thomas ; Martinon, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-fb1fd5c8f17fd7249cbc1d23d870db356a2df39c8c0c9c1cfec7a2086bf67bcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acceleration</topic><topic>Agglomeration</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Data management</topic><topic>Data models</topic><topic>Driving conditions</topic><topic>Energy consumption</topic><topic>Estimation</topic><topic>Mathematics</topic><topic>Occupancy</topic><topic>Optimization and Control</topic><topic>Parameter sensitivity</topic><topic>Roads</topic><topic>Sensitivity analysis</topic><topic>Traffic</topic><topic>Traffic information</topic><topic>Traffic modeling</topic><topic>Traffic models</topic><topic>Traffic speed</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Rhun, Arthur</creatorcontrib><creatorcontrib>Bonnans, Frederic</creatorcontrib><creatorcontrib>De Nunzio, Giovanni</creatorcontrib><creatorcontrib>Leroy, Thomas</creatorcontrib><creatorcontrib>Martinon, Pierre</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Le Rhun, Arthur</au><au>Bonnans, Frederic</au><au>De Nunzio, Giovanni</au><au>Leroy, Thomas</au><au>Martinon, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Stochastic Data-Based Traffic Model Applied to Vehicles Energy Consumption Estimation</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>21</volume><issue>7</issue><spage>3025</spage><epage>3034</epage><pages>3025-3034</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>A new approach to estimate traffic energy consumption via traffic data aggregation in (speed and acceleration) probability distributions is proposed. The aggregation is done on each segment composing the road network. In order to reduce data occupancy, clustering techniques are used to obtain meaningful classes of traffic conditions. Different times of the day with similar speed patterns and traffic behavior are thus grouped together in a single cluster. Different energy consumption models based on the aggregated data are proposed to estimate the energy consumption of the vehicles in the road network. For validation purposes, a microscopic traffic simulator is used to generate the data and compare the estimated energy consumption to the measured one. A thorough sensitivity analysis with respect to the parameters of the proposed method (i.e., number of clusters and size of the distributions support) is also conducted in simulation. Finally, a real-life scenario using floating car data is analyzed to evaluate the applicability and the robustness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2019.2923292</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1734-434X</orcidid><orcidid>https://orcid.org/0000-0003-0571-2376</orcidid><orcidid>https://orcid.org/0000-0003-1179-8735</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2020-07, Vol.21 (7), p.3025-3034
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_8750810
source IEEE Electronic Library (IEL)
subjects Acceleration
Agglomeration
Clustering
Clustering algorithms
Computational modeling
Computer simulation
Data management
Data models
Driving conditions
Energy consumption
Estimation
Mathematics
Occupancy
Optimization and Control
Parameter sensitivity
Roads
Sensitivity analysis
Traffic
Traffic information
Traffic modeling
Traffic models
Traffic speed
Transportation networks
title A Stochastic Data-Based Traffic Model Applied to Vehicles Energy Consumption Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Stochastic%20Data-Based%20Traffic%20Model%20Applied%20to%20Vehicles%20Energy%20Consumption%20Estimation&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Le%20Rhun,%20Arthur&rft.date=2020-07-01&rft.volume=21&rft.issue=7&rft.spage=3025&rft.epage=3034&rft.pages=3025-3034&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2019.2923292&rft_dat=%3Cproquest_RIE%3E2419496115%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419496115&rft_id=info:pmid/&rft_ieee_id=8750810&rfr_iscdi=true