MemFlow: Memory-Driven Data Scheduling With Datapath Co-Design in Accelerators for Large-Scale Inference Applications

The increasing importance of inference algorithms, such as neural networks (NNs), principle component analysis (PCA), and singular value decomposition (SVD), etc., has led to the emergence of hardware accelerators to address power-performance tradeoffs in their implementation. Their large data sets...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2020-09, Vol.39 (9), p.1875-1888
Hauptverfasser: Nie, Qi, Malik, Sharad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1888
container_issue 9
container_start_page 1875
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 39
creator Nie, Qi
Malik, Sharad
description The increasing importance of inference algorithms, such as neural networks (NNs), principle component analysis (PCA), and singular value decomposition (SVD), etc., has led to the emergence of hardware accelerators to address power-performance tradeoffs in their implementation. Their large data sets make DRAM access the bottleneck for power and performance. Private SRAM scratch-pad memory is used to mitigate the DRAM access penalty but it is a limited resource in size and bandwidth. Thus, accelerator design is not just about computation, but also how data flow is scheduled across the memory hierarchy, including DRAM, scratch-pad SRAM, and datapath registers. Current accelerator design tools automate the generation of customized datapaths to improve performance, but have limited support for reducing DRAM/SRAM accesses during the computation. In this paper, we propose a memory-driven accelerator design methodology for large-scale inference applications, to maximize data access in the datapath and SRAM. We demonstrate its efficacy using several key kernels from large-scale inference applications.
doi_str_mv 10.1109/TCAD.2019.2925377
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8747420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8747420</ieee_id><sourcerecordid>2436404905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-de4acbb8510cdfad9f7d209859e2bd28b4b5eb98409e31df29be7a3adca307613</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsH78APGy4Dl19iPdrLfSWhUqHlQ8hs1m0m5Js3E3UfrvTa14mpfheWfgIeSKwZgx0Ldvs-l8zIHpMdc8FUodkRHTQiWSpeyYjICrLAFQcErOYtwAMJlyPSL9M24Xtf--o0PwYZfMg_vChs5NZ-irXWPZ165Z0Q_XrX-XrRnCzCdzjG7VUNfQqbVYYzCdD5FWPtClCStMXq2pkT41FQZsLNJp29bOms75Jl6Qk8rUES__5jl5X9y_zR6T5cvD02y6TCzXoktKlMYWRZYysGVlSl2pkoPOUo28KHlWyCLFQmcSNApWVlwXqIwwpTUC1ISJc3JzuNsG_9lj7PKN70MzvMy5FBMJUkM6UOxA2eBjDFjlbXBbE3Y5g3xvN9_bzfd28z-7Q-f60HGI-M9nSirJQfwAnZh3Fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436404905</pqid></control><display><type>article</type><title>MemFlow: Memory-Driven Data Scheduling With Datapath Co-Design in Accelerators for Large-Scale Inference Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Nie, Qi ; Malik, Sharad</creator><creatorcontrib>Nie, Qi ; Malik, Sharad</creatorcontrib><description>The increasing importance of inference algorithms, such as neural networks (NNs), principle component analysis (PCA), and singular value decomposition (SVD), etc., has led to the emergence of hardware accelerators to address power-performance tradeoffs in their implementation. Their large data sets make DRAM access the bottleneck for power and performance. Private SRAM scratch-pad memory is used to mitigate the DRAM access penalty but it is a limited resource in size and bandwidth. Thus, accelerator design is not just about computation, but also how data flow is scheduled across the memory hierarchy, including DRAM, scratch-pad SRAM, and datapath registers. Current accelerator design tools automate the generation of customized datapaths to improve performance, but have limited support for reducing DRAM/SRAM accesses during the computation. In this paper, we propose a memory-driven accelerator design methodology for large-scale inference applications, to maximize data access in the datapath and SRAM. We demonstrate its efficacy using several key kernels from large-scale inference applications.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2019.2925377</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerator ; Accelerators ; Algorithms ; Bandwidth ; Co-design ; Computation ; Data paths ; data scheduling ; Dynamic random access memory ; hardware/software co-design ; Inference ; Kernel ; large-scale computing ; memory utilization ; Neural networks ; Optimization ; Performance enhancement ; Pipeline processing ; Principal components analysis ; Random access memory ; Registers ; Scheduling ; Singular value decomposition ; Static random access memory</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2020-09, Vol.39 (9), p.1875-1888</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-de4acbb8510cdfad9f7d209859e2bd28b4b5eb98409e31df29be7a3adca307613</citedby><cites>FETCH-LOGICAL-c293t-de4acbb8510cdfad9f7d209859e2bd28b4b5eb98409e31df29be7a3adca307613</cites><orcidid>0000-0002-0254-0487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8747420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8747420$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nie, Qi</creatorcontrib><creatorcontrib>Malik, Sharad</creatorcontrib><title>MemFlow: Memory-Driven Data Scheduling With Datapath Co-Design in Accelerators for Large-Scale Inference Applications</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>The increasing importance of inference algorithms, such as neural networks (NNs), principle component analysis (PCA), and singular value decomposition (SVD), etc., has led to the emergence of hardware accelerators to address power-performance tradeoffs in their implementation. Their large data sets make DRAM access the bottleneck for power and performance. Private SRAM scratch-pad memory is used to mitigate the DRAM access penalty but it is a limited resource in size and bandwidth. Thus, accelerator design is not just about computation, but also how data flow is scheduled across the memory hierarchy, including DRAM, scratch-pad SRAM, and datapath registers. Current accelerator design tools automate the generation of customized datapaths to improve performance, but have limited support for reducing DRAM/SRAM accesses during the computation. In this paper, we propose a memory-driven accelerator design methodology for large-scale inference applications, to maximize data access in the datapath and SRAM. We demonstrate its efficacy using several key kernels from large-scale inference applications.</description><subject>Accelerator</subject><subject>Accelerators</subject><subject>Algorithms</subject><subject>Bandwidth</subject><subject>Co-design</subject><subject>Computation</subject><subject>Data paths</subject><subject>data scheduling</subject><subject>Dynamic random access memory</subject><subject>hardware/software co-design</subject><subject>Inference</subject><subject>Kernel</subject><subject>large-scale computing</subject><subject>memory utilization</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Performance enhancement</subject><subject>Pipeline processing</subject><subject>Principal components analysis</subject><subject>Random access memory</subject><subject>Registers</subject><subject>Scheduling</subject><subject>Singular value decomposition</subject><subject>Static random access memory</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsH78APGy4Dl19iPdrLfSWhUqHlQ8hs1m0m5Js3E3UfrvTa14mpfheWfgIeSKwZgx0Ldvs-l8zIHpMdc8FUodkRHTQiWSpeyYjICrLAFQcErOYtwAMJlyPSL9M24Xtf--o0PwYZfMg_vChs5NZ-irXWPZ165Z0Q_XrX-XrRnCzCdzjG7VUNfQqbVYYzCdD5FWPtClCStMXq2pkT41FQZsLNJp29bOms75Jl6Qk8rUES__5jl5X9y_zR6T5cvD02y6TCzXoktKlMYWRZYysGVlSl2pkoPOUo28KHlWyCLFQmcSNApWVlwXqIwwpTUC1ISJc3JzuNsG_9lj7PKN70MzvMy5FBMJUkM6UOxA2eBjDFjlbXBbE3Y5g3xvN9_bzfd28z-7Q-f60HGI-M9nSirJQfwAnZh3Fw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Nie, Qi</creator><creator>Malik, Sharad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0254-0487</orcidid></search><sort><creationdate>20200901</creationdate><title>MemFlow: Memory-Driven Data Scheduling With Datapath Co-Design in Accelerators for Large-Scale Inference Applications</title><author>Nie, Qi ; Malik, Sharad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-de4acbb8510cdfad9f7d209859e2bd28b4b5eb98409e31df29be7a3adca307613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerator</topic><topic>Accelerators</topic><topic>Algorithms</topic><topic>Bandwidth</topic><topic>Co-design</topic><topic>Computation</topic><topic>Data paths</topic><topic>data scheduling</topic><topic>Dynamic random access memory</topic><topic>hardware/software co-design</topic><topic>Inference</topic><topic>Kernel</topic><topic>large-scale computing</topic><topic>memory utilization</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Performance enhancement</topic><topic>Pipeline processing</topic><topic>Principal components analysis</topic><topic>Random access memory</topic><topic>Registers</topic><topic>Scheduling</topic><topic>Singular value decomposition</topic><topic>Static random access memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Qi</creatorcontrib><creatorcontrib>Malik, Sharad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nie, Qi</au><au>Malik, Sharad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MemFlow: Memory-Driven Data Scheduling With Datapath Co-Design in Accelerators for Large-Scale Inference Applications</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>39</volume><issue>9</issue><spage>1875</spage><epage>1888</epage><pages>1875-1888</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>The increasing importance of inference algorithms, such as neural networks (NNs), principle component analysis (PCA), and singular value decomposition (SVD), etc., has led to the emergence of hardware accelerators to address power-performance tradeoffs in their implementation. Their large data sets make DRAM access the bottleneck for power and performance. Private SRAM scratch-pad memory is used to mitigate the DRAM access penalty but it is a limited resource in size and bandwidth. Thus, accelerator design is not just about computation, but also how data flow is scheduled across the memory hierarchy, including DRAM, scratch-pad SRAM, and datapath registers. Current accelerator design tools automate the generation of customized datapaths to improve performance, but have limited support for reducing DRAM/SRAM accesses during the computation. In this paper, we propose a memory-driven accelerator design methodology for large-scale inference applications, to maximize data access in the datapath and SRAM. We demonstrate its efficacy using several key kernels from large-scale inference applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2019.2925377</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0254-0487</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2020-09, Vol.39 (9), p.1875-1888
issn 0278-0070
1937-4151
language eng
recordid cdi_ieee_primary_8747420
source IEEE Electronic Library (IEL)
subjects Accelerator
Accelerators
Algorithms
Bandwidth
Co-design
Computation
Data paths
data scheduling
Dynamic random access memory
hardware/software co-design
Inference
Kernel
large-scale computing
memory utilization
Neural networks
Optimization
Performance enhancement
Pipeline processing
Principal components analysis
Random access memory
Registers
Scheduling
Singular value decomposition
Static random access memory
title MemFlow: Memory-Driven Data Scheduling With Datapath Co-Design in Accelerators for Large-Scale Inference Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MemFlow:%20Memory-Driven%20Data%20Scheduling%20With%20Datapath%20Co-Design%20in%20Accelerators%20for%20Large-Scale%20Inference%20Applications&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Nie,%20Qi&rft.date=2020-09-01&rft.volume=39&rft.issue=9&rft.spage=1875&rft.epage=1888&rft.pages=1875-1888&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2019.2925377&rft_dat=%3Cproquest_RIE%3E2436404905%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436404905&rft_id=info:pmid/&rft_ieee_id=8747420&rfr_iscdi=true