Improved Frequency Modulation Features for Multichannel Distant Speech Recognition

Frequency modulation features capture the fine structure of speech formants that constitute beneficial to the traditional energy-based cepstral features by carrying supplementary information. Improvements have been demonstrated mainly in Gaussian mixture model (GMM)-hidden Markov model (HMM) systems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2019-08, Vol.13 (4), p.841-849
Hauptverfasser: Rodomagoulakis, Isidoros, Maragos, Petros
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 849
container_issue 4
container_start_page 841
container_title IEEE journal of selected topics in signal processing
container_volume 13
creator Rodomagoulakis, Isidoros
Maragos, Petros
description Frequency modulation features capture the fine structure of speech formants that constitute beneficial to the traditional energy-based cepstral features by carrying supplementary information. Improvements have been demonstrated mainly in Gaussian mixture model (GMM)-hidden Markov model (HMM) systems for small and large vocabulary tasks. Yet, they have limited applications in deep neural network (DNN)-HMM systems and distant speech recognition (DSR) tasks. Herein, we elaborate on their integration within state-of-the-art front-end schemes that include post-processing of MFCCs resulting in discriminant and speaker-adapted features of large temporal contexts. We explore: 1) multichannel demodulation schemes for multi-microphone setups; 2) richer descriptors of frequency modulations; and 3) feature transformation and combination via hierarchical deep networks. We present results for tandem and hybrid recognition with GMM and DNN acoustic models, respectively. The improved modulation features are combined efficiently with MFCCs yielding modest and consistent improvements in multichannel DSR tasks on reverberant and noisy environments, where recognition rates are far from human performance.
doi_str_mv 10.1109/JSTSP.2019.2923372
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8744655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8744655</ieee_id><sourcerecordid>2264429238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-98fb20e7ae7e9f8211dd7054789707005dc40d59859ebeffc339b553b9fb0a413</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AX1p4vOw7Tq6PhoUxUA0gM9N193KyNiw7Uz493ZCfLr34Zx7z_kQuqVkRCmRD2-r9epjxAiVIyZZmgp2hgZUcpoQnvPzfk9ZwrMsvURX3m8JycSY8gFaznZ71_5AiacOvjtozAEv2rKrdajaBk9Bh86Bx7Z1eNHVoTIb3TRQ46fKB90EvNoDmA1egmm_mqo3XaMLq2sPN6c5RJ_T5_XkNZm_v8wmj_PEMJmFROa2YASEBgHS5ozSshQk4yKXgogYsDSclJnMMwkFWGvSVBaxQCFtQTSn6RDdH-_GAjG5D2rbdq6JLxVjY857EHlUsaPKuNZ7B1btXbXT7qAoUT079cdO9ezUiV003R1NFQD8G3LB-Tgm-AWylmuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2264429238</pqid></control><display><type>article</type><title>Improved Frequency Modulation Features for Multichannel Distant Speech Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Rodomagoulakis, Isidoros ; Maragos, Petros</creator><creatorcontrib>Rodomagoulakis, Isidoros ; Maragos, Petros</creatorcontrib><description>Frequency modulation features capture the fine structure of speech formants that constitute beneficial to the traditional energy-based cepstral features by carrying supplementary information. Improvements have been demonstrated mainly in Gaussian mixture model (GMM)-hidden Markov model (HMM) systems for small and large vocabulary tasks. Yet, they have limited applications in deep neural network (DNN)-HMM systems and distant speech recognition (DSR) tasks. Herein, we elaborate on their integration within state-of-the-art front-end schemes that include post-processing of MFCCs resulting in discriminant and speaker-adapted features of large temporal contexts. We explore: 1) multichannel demodulation schemes for multi-microphone setups; 2) richer descriptors of frequency modulations; and 3) feature transformation and combination via hierarchical deep networks. We present results for tandem and hybrid recognition with GMM and DNN acoustic models, respectively. The improved modulation features are combined efficiently with MFCCs yielding modest and consistent improvements in multichannel DSR tasks on reverberant and noisy environments, where recognition rates are far from human performance.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2019.2923372</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic noise ; Acoustics ; Artificial neural networks ; deep bottleneck features ; Demodulation ; distant speech recognition ; Feature extraction ; Feature recognition ; Fine structure ; Frequency modulation ; Frequency modulation features ; Human performance ; Markov chains ; Microphones ; Noise measurement ; Post-processing ; Probabilistic models ; Speech recognition ; Voice recognition</subject><ispartof>IEEE journal of selected topics in signal processing, 2019-08, Vol.13 (4), p.841-849</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-98fb20e7ae7e9f8211dd7054789707005dc40d59859ebeffc339b553b9fb0a413</citedby><cites>FETCH-LOGICAL-c295t-98fb20e7ae7e9f8211dd7054789707005dc40d59859ebeffc339b553b9fb0a413</cites><orcidid>0000-0003-0338-7418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8744655$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8744655$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rodomagoulakis, Isidoros</creatorcontrib><creatorcontrib>Maragos, Petros</creatorcontrib><title>Improved Frequency Modulation Features for Multichannel Distant Speech Recognition</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Frequency modulation features capture the fine structure of speech formants that constitute beneficial to the traditional energy-based cepstral features by carrying supplementary information. Improvements have been demonstrated mainly in Gaussian mixture model (GMM)-hidden Markov model (HMM) systems for small and large vocabulary tasks. Yet, they have limited applications in deep neural network (DNN)-HMM systems and distant speech recognition (DSR) tasks. Herein, we elaborate on their integration within state-of-the-art front-end schemes that include post-processing of MFCCs resulting in discriminant and speaker-adapted features of large temporal contexts. We explore: 1) multichannel demodulation schemes for multi-microphone setups; 2) richer descriptors of frequency modulations; and 3) feature transformation and combination via hierarchical deep networks. We present results for tandem and hybrid recognition with GMM and DNN acoustic models, respectively. The improved modulation features are combined efficiently with MFCCs yielding modest and consistent improvements in multichannel DSR tasks on reverberant and noisy environments, where recognition rates are far from human performance.</description><subject>Acoustic noise</subject><subject>Acoustics</subject><subject>Artificial neural networks</subject><subject>deep bottleneck features</subject><subject>Demodulation</subject><subject>distant speech recognition</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>Fine structure</subject><subject>Frequency modulation</subject><subject>Frequency modulation features</subject><subject>Human performance</subject><subject>Markov chains</subject><subject>Microphones</subject><subject>Noise measurement</subject><subject>Post-processing</subject><subject>Probabilistic models</subject><subject>Speech recognition</subject><subject>Voice recognition</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAUhRujiYj-AX1p4vOw7Tq6PhoUxUA0gM9N193KyNiw7Uz493ZCfLr34Zx7z_kQuqVkRCmRD2-r9epjxAiVIyZZmgp2hgZUcpoQnvPzfk9ZwrMsvURX3m8JycSY8gFaznZ71_5AiacOvjtozAEv2rKrdajaBk9Bh86Bx7Z1eNHVoTIb3TRQ46fKB90EvNoDmA1egmm_mqo3XaMLq2sPN6c5RJ_T5_XkNZm_v8wmj_PEMJmFROa2YASEBgHS5ozSshQk4yKXgogYsDSclJnMMwkFWGvSVBaxQCFtQTSn6RDdH-_GAjG5D2rbdq6JLxVjY857EHlUsaPKuNZ7B1btXbXT7qAoUT079cdO9ezUiV003R1NFQD8G3LB-Tgm-AWylmuA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Rodomagoulakis, Isidoros</creator><creator>Maragos, Petros</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0338-7418</orcidid></search><sort><creationdate>20190801</creationdate><title>Improved Frequency Modulation Features for Multichannel Distant Speech Recognition</title><author>Rodomagoulakis, Isidoros ; Maragos, Petros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-98fb20e7ae7e9f8211dd7054789707005dc40d59859ebeffc339b553b9fb0a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic noise</topic><topic>Acoustics</topic><topic>Artificial neural networks</topic><topic>deep bottleneck features</topic><topic>Demodulation</topic><topic>distant speech recognition</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>Fine structure</topic><topic>Frequency modulation</topic><topic>Frequency modulation features</topic><topic>Human performance</topic><topic>Markov chains</topic><topic>Microphones</topic><topic>Noise measurement</topic><topic>Post-processing</topic><topic>Probabilistic models</topic><topic>Speech recognition</topic><topic>Voice recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodomagoulakis, Isidoros</creatorcontrib><creatorcontrib>Maragos, Petros</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rodomagoulakis, Isidoros</au><au>Maragos, Petros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Frequency Modulation Features for Multichannel Distant Speech Recognition</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>13</volume><issue>4</issue><spage>841</spage><epage>849</epage><pages>841-849</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Frequency modulation features capture the fine structure of speech formants that constitute beneficial to the traditional energy-based cepstral features by carrying supplementary information. Improvements have been demonstrated mainly in Gaussian mixture model (GMM)-hidden Markov model (HMM) systems for small and large vocabulary tasks. Yet, they have limited applications in deep neural network (DNN)-HMM systems and distant speech recognition (DSR) tasks. Herein, we elaborate on their integration within state-of-the-art front-end schemes that include post-processing of MFCCs resulting in discriminant and speaker-adapted features of large temporal contexts. We explore: 1) multichannel demodulation schemes for multi-microphone setups; 2) richer descriptors of frequency modulations; and 3) feature transformation and combination via hierarchical deep networks. We present results for tandem and hybrid recognition with GMM and DNN acoustic models, respectively. The improved modulation features are combined efficiently with MFCCs yielding modest and consistent improvements in multichannel DSR tasks on reverberant and noisy environments, where recognition rates are far from human performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2019.2923372</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0338-7418</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2019-08, Vol.13 (4), p.841-849
issn 1932-4553
1941-0484
language eng
recordid cdi_ieee_primary_8744655
source IEEE Electronic Library (IEL)
subjects Acoustic noise
Acoustics
Artificial neural networks
deep bottleneck features
Demodulation
distant speech recognition
Feature extraction
Feature recognition
Fine structure
Frequency modulation
Frequency modulation features
Human performance
Markov chains
Microphones
Noise measurement
Post-processing
Probabilistic models
Speech recognition
Voice recognition
title Improved Frequency Modulation Features for Multichannel Distant Speech Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T20%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Frequency%20Modulation%20Features%20for%20Multichannel%20Distant%20Speech%20Recognition&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Rodomagoulakis,%20Isidoros&rft.date=2019-08-01&rft.volume=13&rft.issue=4&rft.spage=841&rft.epage=849&rft.pages=841-849&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2019.2923372&rft_dat=%3Cproquest_RIE%3E2264429238%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2264429238&rft_id=info:pmid/&rft_ieee_id=8744655&rfr_iscdi=true