Improved Frequency Modulation Features for Multichannel Distant Speech Recognition
Frequency modulation features capture the fine structure of speech formants that constitute beneficial to the traditional energy-based cepstral features by carrying supplementary information. Improvements have been demonstrated mainly in Gaussian mixture model (GMM)-hidden Markov model (HMM) systems...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in signal processing 2019-08, Vol.13 (4), p.841-849 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 849 |
---|---|
container_issue | 4 |
container_start_page | 841 |
container_title | IEEE journal of selected topics in signal processing |
container_volume | 13 |
creator | Rodomagoulakis, Isidoros Maragos, Petros |
description | Frequency modulation features capture the fine structure of speech formants that constitute beneficial to the traditional energy-based cepstral features by carrying supplementary information. Improvements have been demonstrated mainly in Gaussian mixture model (GMM)-hidden Markov model (HMM) systems for small and large vocabulary tasks. Yet, they have limited applications in deep neural network (DNN)-HMM systems and distant speech recognition (DSR) tasks. Herein, we elaborate on their integration within state-of-the-art front-end schemes that include post-processing of MFCCs resulting in discriminant and speaker-adapted features of large temporal contexts. We explore: 1) multichannel demodulation schemes for multi-microphone setups; 2) richer descriptors of frequency modulations; and 3) feature transformation and combination via hierarchical deep networks. We present results for tandem and hybrid recognition with GMM and DNN acoustic models, respectively. The improved modulation features are combined efficiently with MFCCs yielding modest and consistent improvements in multichannel DSR tasks on reverberant and noisy environments, where recognition rates are far from human performance. |
doi_str_mv | 10.1109/JSTSP.2019.2923372 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8744655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8744655</ieee_id><sourcerecordid>2264429238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-98fb20e7ae7e9f8211dd7054789707005dc40d59859ebeffc339b553b9fb0a413</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AX1p4vOw7Tq6PhoUxUA0gM9N193KyNiw7Uz493ZCfLr34Zx7z_kQuqVkRCmRD2-r9epjxAiVIyZZmgp2hgZUcpoQnvPzfk9ZwrMsvURX3m8JycSY8gFaznZ71_5AiacOvjtozAEv2rKrdajaBk9Bh86Bx7Z1eNHVoTIb3TRQ46fKB90EvNoDmA1egmm_mqo3XaMLq2sPN6c5RJ_T5_XkNZm_v8wmj_PEMJmFROa2YASEBgHS5ozSshQk4yKXgogYsDSclJnMMwkFWGvSVBaxQCFtQTSn6RDdH-_GAjG5D2rbdq6JLxVjY857EHlUsaPKuNZ7B1btXbXT7qAoUT079cdO9ezUiV003R1NFQD8G3LB-Tgm-AWylmuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2264429238</pqid></control><display><type>article</type><title>Improved Frequency Modulation Features for Multichannel Distant Speech Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Rodomagoulakis, Isidoros ; Maragos, Petros</creator><creatorcontrib>Rodomagoulakis, Isidoros ; Maragos, Petros</creatorcontrib><description>Frequency modulation features capture the fine structure of speech formants that constitute beneficial to the traditional energy-based cepstral features by carrying supplementary information. Improvements have been demonstrated mainly in Gaussian mixture model (GMM)-hidden Markov model (HMM) systems for small and large vocabulary tasks. Yet, they have limited applications in deep neural network (DNN)-HMM systems and distant speech recognition (DSR) tasks. Herein, we elaborate on their integration within state-of-the-art front-end schemes that include post-processing of MFCCs resulting in discriminant and speaker-adapted features of large temporal contexts. We explore: 1) multichannel demodulation schemes for multi-microphone setups; 2) richer descriptors of frequency modulations; and 3) feature transformation and combination via hierarchical deep networks. We present results for tandem and hybrid recognition with GMM and DNN acoustic models, respectively. The improved modulation features are combined efficiently with MFCCs yielding modest and consistent improvements in multichannel DSR tasks on reverberant and noisy environments, where recognition rates are far from human performance.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2019.2923372</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic noise ; Acoustics ; Artificial neural networks ; deep bottleneck features ; Demodulation ; distant speech recognition ; Feature extraction ; Feature recognition ; Fine structure ; Frequency modulation ; Frequency modulation features ; Human performance ; Markov chains ; Microphones ; Noise measurement ; Post-processing ; Probabilistic models ; Speech recognition ; Voice recognition</subject><ispartof>IEEE journal of selected topics in signal processing, 2019-08, Vol.13 (4), p.841-849</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-98fb20e7ae7e9f8211dd7054789707005dc40d59859ebeffc339b553b9fb0a413</citedby><cites>FETCH-LOGICAL-c295t-98fb20e7ae7e9f8211dd7054789707005dc40d59859ebeffc339b553b9fb0a413</cites><orcidid>0000-0003-0338-7418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8744655$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8744655$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rodomagoulakis, Isidoros</creatorcontrib><creatorcontrib>Maragos, Petros</creatorcontrib><title>Improved Frequency Modulation Features for Multichannel Distant Speech Recognition</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Frequency modulation features capture the fine structure of speech formants that constitute beneficial to the traditional energy-based cepstral features by carrying supplementary information. Improvements have been demonstrated mainly in Gaussian mixture model (GMM)-hidden Markov model (HMM) systems for small and large vocabulary tasks. Yet, they have limited applications in deep neural network (DNN)-HMM systems and distant speech recognition (DSR) tasks. Herein, we elaborate on their integration within state-of-the-art front-end schemes that include post-processing of MFCCs resulting in discriminant and speaker-adapted features of large temporal contexts. We explore: 1) multichannel demodulation schemes for multi-microphone setups; 2) richer descriptors of frequency modulations; and 3) feature transformation and combination via hierarchical deep networks. We present results for tandem and hybrid recognition with GMM and DNN acoustic models, respectively. The improved modulation features are combined efficiently with MFCCs yielding modest and consistent improvements in multichannel DSR tasks on reverberant and noisy environments, where recognition rates are far from human performance.</description><subject>Acoustic noise</subject><subject>Acoustics</subject><subject>Artificial neural networks</subject><subject>deep bottleneck features</subject><subject>Demodulation</subject><subject>distant speech recognition</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>Fine structure</subject><subject>Frequency modulation</subject><subject>Frequency modulation features</subject><subject>Human performance</subject><subject>Markov chains</subject><subject>Microphones</subject><subject>Noise measurement</subject><subject>Post-processing</subject><subject>Probabilistic models</subject><subject>Speech recognition</subject><subject>Voice recognition</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAUhRujiYj-AX1p4vOw7Tq6PhoUxUA0gM9N193KyNiw7Uz493ZCfLr34Zx7z_kQuqVkRCmRD2-r9epjxAiVIyZZmgp2hgZUcpoQnvPzfk9ZwrMsvURX3m8JycSY8gFaznZ71_5AiacOvjtozAEv2rKrdajaBk9Bh86Bx7Z1eNHVoTIb3TRQ46fKB90EvNoDmA1egmm_mqo3XaMLq2sPN6c5RJ_T5_XkNZm_v8wmj_PEMJmFROa2YASEBgHS5ozSshQk4yKXgogYsDSclJnMMwkFWGvSVBaxQCFtQTSn6RDdH-_GAjG5D2rbdq6JLxVjY857EHlUsaPKuNZ7B1btXbXT7qAoUT079cdO9ezUiV003R1NFQD8G3LB-Tgm-AWylmuA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Rodomagoulakis, Isidoros</creator><creator>Maragos, Petros</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0338-7418</orcidid></search><sort><creationdate>20190801</creationdate><title>Improved Frequency Modulation Features for Multichannel Distant Speech Recognition</title><author>Rodomagoulakis, Isidoros ; Maragos, Petros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-98fb20e7ae7e9f8211dd7054789707005dc40d59859ebeffc339b553b9fb0a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic noise</topic><topic>Acoustics</topic><topic>Artificial neural networks</topic><topic>deep bottleneck features</topic><topic>Demodulation</topic><topic>distant speech recognition</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>Fine structure</topic><topic>Frequency modulation</topic><topic>Frequency modulation features</topic><topic>Human performance</topic><topic>Markov chains</topic><topic>Microphones</topic><topic>Noise measurement</topic><topic>Post-processing</topic><topic>Probabilistic models</topic><topic>Speech recognition</topic><topic>Voice recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodomagoulakis, Isidoros</creatorcontrib><creatorcontrib>Maragos, Petros</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rodomagoulakis, Isidoros</au><au>Maragos, Petros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Frequency Modulation Features for Multichannel Distant Speech Recognition</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>13</volume><issue>4</issue><spage>841</spage><epage>849</epage><pages>841-849</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Frequency modulation features capture the fine structure of speech formants that constitute beneficial to the traditional energy-based cepstral features by carrying supplementary information. Improvements have been demonstrated mainly in Gaussian mixture model (GMM)-hidden Markov model (HMM) systems for small and large vocabulary tasks. Yet, they have limited applications in deep neural network (DNN)-HMM systems and distant speech recognition (DSR) tasks. Herein, we elaborate on their integration within state-of-the-art front-end schemes that include post-processing of MFCCs resulting in discriminant and speaker-adapted features of large temporal contexts. We explore: 1) multichannel demodulation schemes for multi-microphone setups; 2) richer descriptors of frequency modulations; and 3) feature transformation and combination via hierarchical deep networks. We present results for tandem and hybrid recognition with GMM and DNN acoustic models, respectively. The improved modulation features are combined efficiently with MFCCs yielding modest and consistent improvements in multichannel DSR tasks on reverberant and noisy environments, where recognition rates are far from human performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2019.2923372</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0338-7418</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4553 |
ispartof | IEEE journal of selected topics in signal processing, 2019-08, Vol.13 (4), p.841-849 |
issn | 1932-4553 1941-0484 |
language | eng |
recordid | cdi_ieee_primary_8744655 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic noise Acoustics Artificial neural networks deep bottleneck features Demodulation distant speech recognition Feature extraction Feature recognition Fine structure Frequency modulation Frequency modulation features Human performance Markov chains Microphones Noise measurement Post-processing Probabilistic models Speech recognition Voice recognition |
title | Improved Frequency Modulation Features for Multichannel Distant Speech Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T20%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Frequency%20Modulation%20Features%20for%20Multichannel%20Distant%20Speech%20Recognition&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Rodomagoulakis,%20Isidoros&rft.date=2019-08-01&rft.volume=13&rft.issue=4&rft.spage=841&rft.epage=849&rft.pages=841-849&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2019.2923372&rft_dat=%3Cproquest_RIE%3E2264429238%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2264429238&rft_id=info:pmid/&rft_ieee_id=8744655&rfr_iscdi=true |