Numerical and Experimental Calculation of CHTC in an Oil-Based Shaft Cooling System for a High-Speed High-Power PMSM
The convective heat transfer coefficient (CHTC) is a critical parameter that is required for developing an accurate and efficient thermal design of electrical machines. However, the existing empirical CHTC correlations are invalid for an oil-cooled hollow-shaft rotor. On this basis, a simplified num...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2020-06, Vol.67 (6), p.4371-4380 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4380 |
---|---|
container_issue | 6 |
container_start_page | 4371 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 67 |
creator | Gai, Yaohui Widmer, James D. Steven, Andrew Chong, Yew Chuan Kimiabeigi, Mohammad Goss, James Popescu, Mircea |
description | The convective heat transfer coefficient (CHTC) is a critical parameter that is required for developing an accurate and efficient thermal design of electrical machines. However, the existing empirical CHTC correlations are invalid for an oil-cooled hollow-shaft rotor. On this basis, a simplified numerical model based on computational fluid dynamics methods is developed in this paper to provide a qualitative understanding of the rotational effects on the convective heat transfer across a range of operation speeds. Then experiments are undertaken to validate the data obtained from numerical models and to estimate the impact parameters on the CHTC, such as the rotational velocity, coolant flow rate, and coolant temperature. On the basis of the numerical and the experimental results, it is concluded that the rotation can significantly increase the CHTC of the shaft inner wall surface above the level of the stationary condition. However, the axial flow rate and the viscosity of the coolant have less influence on convective heat transfer for the high rotational speeds. As a result of such analysis, a general correlation is defined by using Nusselt numbers as a function of rotational Reynolds numbers and Prandtl numbers. |
doi_str_mv | 10.1109/TIE.2019.2922938 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8743561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8743561</ieee_id><sourcerecordid>2358911445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-100815120ecd39aae4b72bd1228f6d276c2c0f889ff8e2f22bbb2de4dcd990bd3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjcBrzuT06RNLrVMN9jcoPO6pE2ydXRN7Qe6f2_mxKvzwfOeAw9C95RMKCXyaTOfToBQOQEJIENxgUaU8ziQkolLNCIQi4AQFl2jm67bE0IZp3yE-vfhYNqyUBVWtcbT78ZPB1P3fpGoqhgq1Zeuxs7iZLZJcFl7Dq_KKnhRndE43Snb48S5qqy3OD12vTlg61qs8Kzc7oK0MZ76bdfuy7R4vUyXt-jKqqozd391jD5ep5tkFixWb_PkeREUIGkfUEIE5RSIKXQolTIsjyHXFEDYSEMcFVAQK4S0VhiwAHmegzZMF1pKkutwjB7Pd5vWfQ6m67O9G9rav8wg5EJSyhj3FDlTReu6rjU2a7wC1R4zSrKT28y7zU5usz-3PvJwjpTGmH9cxCzkEQ1_AIhndGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358911445</pqid></control><display><type>article</type><title>Numerical and Experimental Calculation of CHTC in an Oil-Based Shaft Cooling System for a High-Speed High-Power PMSM</title><source>IEEE Electronic Library (IEL)</source><creator>Gai, Yaohui ; Widmer, James D. ; Steven, Andrew ; Chong, Yew Chuan ; Kimiabeigi, Mohammad ; Goss, James ; Popescu, Mircea</creator><creatorcontrib>Gai, Yaohui ; Widmer, James D. ; Steven, Andrew ; Chong, Yew Chuan ; Kimiabeigi, Mohammad ; Goss, James ; Popescu, Mircea</creatorcontrib><description>The convective heat transfer coefficient (CHTC) is a critical parameter that is required for developing an accurate and efficient thermal design of electrical machines. However, the existing empirical CHTC correlations are invalid for an oil-cooled hollow-shaft rotor. On this basis, a simplified numerical model based on computational fluid dynamics methods is developed in this paper to provide a qualitative understanding of the rotational effects on the convective heat transfer across a range of operation speeds. Then experiments are undertaken to validate the data obtained from numerical models and to estimate the impact parameters on the CHTC, such as the rotational velocity, coolant flow rate, and coolant temperature. On the basis of the numerical and the experimental results, it is concluded that the rotation can significantly increase the CHTC of the shaft inner wall surface above the level of the stationary condition. However, the axial flow rate and the viscosity of the coolant have less influence on convective heat transfer for the high rotational speeds. As a result of such analysis, a general correlation is defined by using Nusselt numbers as a function of rotational Reynolds numbers and Prandtl numbers.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2019.2922938</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Axial flow ; Computational fluid dynamics ; computational fluid dynamics (CFD) ; Convective heat transfer ; convective heat transfer coefficient (CHTC) ; Coolants ; Cooling ; Cooling rate ; Cooling systems ; Correlation analysis ; electrical machines ; Empirical analysis ; Flow velocity ; Fluid flow ; Heat transfer ; Heat transfer coefficients ; Mathematical models ; Numerical models ; Oils ; Parameter estimation ; Rotation ; Rotors ; Shafts ; Temperature measurement ; thermal analysis ; Thermal design ; Viscosity</subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-06, Vol.67 (6), p.4371-4380</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-100815120ecd39aae4b72bd1228f6d276c2c0f889ff8e2f22bbb2de4dcd990bd3</citedby><cites>FETCH-LOGICAL-c291t-100815120ecd39aae4b72bd1228f6d276c2c0f889ff8e2f22bbb2de4dcd990bd3</cites><orcidid>0000-0002-6766-1554 ; 0000-0002-3683-8265 ; 0000-0001-8176-654X ; 0000-0001-6814-8886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8743561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8743561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gai, Yaohui</creatorcontrib><creatorcontrib>Widmer, James D.</creatorcontrib><creatorcontrib>Steven, Andrew</creatorcontrib><creatorcontrib>Chong, Yew Chuan</creatorcontrib><creatorcontrib>Kimiabeigi, Mohammad</creatorcontrib><creatorcontrib>Goss, James</creatorcontrib><creatorcontrib>Popescu, Mircea</creatorcontrib><title>Numerical and Experimental Calculation of CHTC in an Oil-Based Shaft Cooling System for a High-Speed High-Power PMSM</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>The convective heat transfer coefficient (CHTC) is a critical parameter that is required for developing an accurate and efficient thermal design of electrical machines. However, the existing empirical CHTC correlations are invalid for an oil-cooled hollow-shaft rotor. On this basis, a simplified numerical model based on computational fluid dynamics methods is developed in this paper to provide a qualitative understanding of the rotational effects on the convective heat transfer across a range of operation speeds. Then experiments are undertaken to validate the data obtained from numerical models and to estimate the impact parameters on the CHTC, such as the rotational velocity, coolant flow rate, and coolant temperature. On the basis of the numerical and the experimental results, it is concluded that the rotation can significantly increase the CHTC of the shaft inner wall surface above the level of the stationary condition. However, the axial flow rate and the viscosity of the coolant have less influence on convective heat transfer for the high rotational speeds. As a result of such analysis, a general correlation is defined by using Nusselt numbers as a function of rotational Reynolds numbers and Prandtl numbers.</description><subject>Axial flow</subject><subject>Computational fluid dynamics</subject><subject>computational fluid dynamics (CFD)</subject><subject>Convective heat transfer</subject><subject>convective heat transfer coefficient (CHTC)</subject><subject>Coolants</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Cooling systems</subject><subject>Correlation analysis</subject><subject>electrical machines</subject><subject>Empirical analysis</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Oils</subject><subject>Parameter estimation</subject><subject>Rotation</subject><subject>Rotors</subject><subject>Shafts</subject><subject>Temperature measurement</subject><subject>thermal analysis</subject><subject>Thermal design</subject><subject>Viscosity</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKf3gjcBrzuT06RNLrVMN9jcoPO6pE2ydXRN7Qe6f2_mxKvzwfOeAw9C95RMKCXyaTOfToBQOQEJIENxgUaU8ziQkolLNCIQi4AQFl2jm67bE0IZp3yE-vfhYNqyUBVWtcbT78ZPB1P3fpGoqhgq1Zeuxs7iZLZJcFl7Dq_KKnhRndE43Snb48S5qqy3OD12vTlg61qs8Kzc7oK0MZ76bdfuy7R4vUyXt-jKqqozd391jD5ep5tkFixWb_PkeREUIGkfUEIE5RSIKXQolTIsjyHXFEDYSEMcFVAQK4S0VhiwAHmegzZMF1pKkutwjB7Pd5vWfQ6m67O9G9rav8wg5EJSyhj3FDlTReu6rjU2a7wC1R4zSrKT28y7zU5usz-3PvJwjpTGmH9cxCzkEQ1_AIhndGA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Gai, Yaohui</creator><creator>Widmer, James D.</creator><creator>Steven, Andrew</creator><creator>Chong, Yew Chuan</creator><creator>Kimiabeigi, Mohammad</creator><creator>Goss, James</creator><creator>Popescu, Mircea</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6766-1554</orcidid><orcidid>https://orcid.org/0000-0002-3683-8265</orcidid><orcidid>https://orcid.org/0000-0001-8176-654X</orcidid><orcidid>https://orcid.org/0000-0001-6814-8886</orcidid></search><sort><creationdate>20200601</creationdate><title>Numerical and Experimental Calculation of CHTC in an Oil-Based Shaft Cooling System for a High-Speed High-Power PMSM</title><author>Gai, Yaohui ; Widmer, James D. ; Steven, Andrew ; Chong, Yew Chuan ; Kimiabeigi, Mohammad ; Goss, James ; Popescu, Mircea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-100815120ecd39aae4b72bd1228f6d276c2c0f889ff8e2f22bbb2de4dcd990bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Axial flow</topic><topic>Computational fluid dynamics</topic><topic>computational fluid dynamics (CFD)</topic><topic>Convective heat transfer</topic><topic>convective heat transfer coefficient (CHTC)</topic><topic>Coolants</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Cooling systems</topic><topic>Correlation analysis</topic><topic>electrical machines</topic><topic>Empirical analysis</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Oils</topic><topic>Parameter estimation</topic><topic>Rotation</topic><topic>Rotors</topic><topic>Shafts</topic><topic>Temperature measurement</topic><topic>thermal analysis</topic><topic>Thermal design</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gai, Yaohui</creatorcontrib><creatorcontrib>Widmer, James D.</creatorcontrib><creatorcontrib>Steven, Andrew</creatorcontrib><creatorcontrib>Chong, Yew Chuan</creatorcontrib><creatorcontrib>Kimiabeigi, Mohammad</creatorcontrib><creatorcontrib>Goss, James</creatorcontrib><creatorcontrib>Popescu, Mircea</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gai, Yaohui</au><au>Widmer, James D.</au><au>Steven, Andrew</au><au>Chong, Yew Chuan</au><au>Kimiabeigi, Mohammad</au><au>Goss, James</au><au>Popescu, Mircea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical and Experimental Calculation of CHTC in an Oil-Based Shaft Cooling System for a High-Speed High-Power PMSM</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>67</volume><issue>6</issue><spage>4371</spage><epage>4380</epage><pages>4371-4380</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>The convective heat transfer coefficient (CHTC) is a critical parameter that is required for developing an accurate and efficient thermal design of electrical machines. However, the existing empirical CHTC correlations are invalid for an oil-cooled hollow-shaft rotor. On this basis, a simplified numerical model based on computational fluid dynamics methods is developed in this paper to provide a qualitative understanding of the rotational effects on the convective heat transfer across a range of operation speeds. Then experiments are undertaken to validate the data obtained from numerical models and to estimate the impact parameters on the CHTC, such as the rotational velocity, coolant flow rate, and coolant temperature. On the basis of the numerical and the experimental results, it is concluded that the rotation can significantly increase the CHTC of the shaft inner wall surface above the level of the stationary condition. However, the axial flow rate and the viscosity of the coolant have less influence on convective heat transfer for the high rotational speeds. As a result of such analysis, a general correlation is defined by using Nusselt numbers as a function of rotational Reynolds numbers and Prandtl numbers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2019.2922938</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6766-1554</orcidid><orcidid>https://orcid.org/0000-0002-3683-8265</orcidid><orcidid>https://orcid.org/0000-0001-8176-654X</orcidid><orcidid>https://orcid.org/0000-0001-6814-8886</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2020-06, Vol.67 (6), p.4371-4380 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_ieee_primary_8743561 |
source | IEEE Electronic Library (IEL) |
subjects | Axial flow Computational fluid dynamics computational fluid dynamics (CFD) Convective heat transfer convective heat transfer coefficient (CHTC) Coolants Cooling Cooling rate Cooling systems Correlation analysis electrical machines Empirical analysis Flow velocity Fluid flow Heat transfer Heat transfer coefficients Mathematical models Numerical models Oils Parameter estimation Rotation Rotors Shafts Temperature measurement thermal analysis Thermal design Viscosity |
title | Numerical and Experimental Calculation of CHTC in an Oil-Based Shaft Cooling System for a High-Speed High-Power PMSM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20and%20Experimental%20Calculation%20of%20CHTC%20in%20an%20Oil-Based%20Shaft%20Cooling%20System%20for%20a%20High-Speed%20High-Power%20PMSM&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Gai,%20Yaohui&rft.date=2020-06-01&rft.volume=67&rft.issue=6&rft.spage=4371&rft.epage=4380&rft.pages=4371-4380&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2019.2922938&rft_dat=%3Cproquest_RIE%3E2358911445%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2358911445&rft_id=info:pmid/&rft_ieee_id=8743561&rfr_iscdi=true |