Numerical and Experimental Calculation of CHTC in an Oil-Based Shaft Cooling System for a High-Speed High-Power PMSM

The convective heat transfer coefficient (CHTC) is a critical parameter that is required for developing an accurate and efficient thermal design of electrical machines. However, the existing empirical CHTC correlations are invalid for an oil-cooled hollow-shaft rotor. On this basis, a simplified num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2020-06, Vol.67 (6), p.4371-4380
Hauptverfasser: Gai, Yaohui, Widmer, James D., Steven, Andrew, Chong, Yew Chuan, Kimiabeigi, Mohammad, Goss, James, Popescu, Mircea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4380
container_issue 6
container_start_page 4371
container_title IEEE transactions on industrial electronics (1982)
container_volume 67
creator Gai, Yaohui
Widmer, James D.
Steven, Andrew
Chong, Yew Chuan
Kimiabeigi, Mohammad
Goss, James
Popescu, Mircea
description The convective heat transfer coefficient (CHTC) is a critical parameter that is required for developing an accurate and efficient thermal design of electrical machines. However, the existing empirical CHTC correlations are invalid for an oil-cooled hollow-shaft rotor. On this basis, a simplified numerical model based on computational fluid dynamics methods is developed in this paper to provide a qualitative understanding of the rotational effects on the convective heat transfer across a range of operation speeds. Then experiments are undertaken to validate the data obtained from numerical models and to estimate the impact parameters on the CHTC, such as the rotational velocity, coolant flow rate, and coolant temperature. On the basis of the numerical and the experimental results, it is concluded that the rotation can significantly increase the CHTC of the shaft inner wall surface above the level of the stationary condition. However, the axial flow rate and the viscosity of the coolant have less influence on convective heat transfer for the high rotational speeds. As a result of such analysis, a general correlation is defined by using Nusselt numbers as a function of rotational Reynolds numbers and Prandtl numbers.
doi_str_mv 10.1109/TIE.2019.2922938
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8743561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8743561</ieee_id><sourcerecordid>2358911445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-100815120ecd39aae4b72bd1228f6d276c2c0f889ff8e2f22bbb2de4dcd990bd3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjcBrzuT06RNLrVMN9jcoPO6pE2ydXRN7Qe6f2_mxKvzwfOeAw9C95RMKCXyaTOfToBQOQEJIENxgUaU8ziQkolLNCIQi4AQFl2jm67bE0IZp3yE-vfhYNqyUBVWtcbT78ZPB1P3fpGoqhgq1Zeuxs7iZLZJcFl7Dq_KKnhRndE43Snb48S5qqy3OD12vTlg61qs8Kzc7oK0MZ76bdfuy7R4vUyXt-jKqqozd391jD5ep5tkFixWb_PkeREUIGkfUEIE5RSIKXQolTIsjyHXFEDYSEMcFVAQK4S0VhiwAHmegzZMF1pKkutwjB7Pd5vWfQ6m67O9G9rav8wg5EJSyhj3FDlTReu6rjU2a7wC1R4zSrKT28y7zU5usz-3PvJwjpTGmH9cxCzkEQ1_AIhndGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358911445</pqid></control><display><type>article</type><title>Numerical and Experimental Calculation of CHTC in an Oil-Based Shaft Cooling System for a High-Speed High-Power PMSM</title><source>IEEE Electronic Library (IEL)</source><creator>Gai, Yaohui ; Widmer, James D. ; Steven, Andrew ; Chong, Yew Chuan ; Kimiabeigi, Mohammad ; Goss, James ; Popescu, Mircea</creator><creatorcontrib>Gai, Yaohui ; Widmer, James D. ; Steven, Andrew ; Chong, Yew Chuan ; Kimiabeigi, Mohammad ; Goss, James ; Popescu, Mircea</creatorcontrib><description>The convective heat transfer coefficient (CHTC) is a critical parameter that is required for developing an accurate and efficient thermal design of electrical machines. However, the existing empirical CHTC correlations are invalid for an oil-cooled hollow-shaft rotor. On this basis, a simplified numerical model based on computational fluid dynamics methods is developed in this paper to provide a qualitative understanding of the rotational effects on the convective heat transfer across a range of operation speeds. Then experiments are undertaken to validate the data obtained from numerical models and to estimate the impact parameters on the CHTC, such as the rotational velocity, coolant flow rate, and coolant temperature. On the basis of the numerical and the experimental results, it is concluded that the rotation can significantly increase the CHTC of the shaft inner wall surface above the level of the stationary condition. However, the axial flow rate and the viscosity of the coolant have less influence on convective heat transfer for the high rotational speeds. As a result of such analysis, a general correlation is defined by using Nusselt numbers as a function of rotational Reynolds numbers and Prandtl numbers.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2019.2922938</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Axial flow ; Computational fluid dynamics ; computational fluid dynamics (CFD) ; Convective heat transfer ; convective heat transfer coefficient (CHTC) ; Coolants ; Cooling ; Cooling rate ; Cooling systems ; Correlation analysis ; electrical machines ; Empirical analysis ; Flow velocity ; Fluid flow ; Heat transfer ; Heat transfer coefficients ; Mathematical models ; Numerical models ; Oils ; Parameter estimation ; Rotation ; Rotors ; Shafts ; Temperature measurement ; thermal analysis ; Thermal design ; Viscosity</subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-06, Vol.67 (6), p.4371-4380</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-100815120ecd39aae4b72bd1228f6d276c2c0f889ff8e2f22bbb2de4dcd990bd3</citedby><cites>FETCH-LOGICAL-c291t-100815120ecd39aae4b72bd1228f6d276c2c0f889ff8e2f22bbb2de4dcd990bd3</cites><orcidid>0000-0002-6766-1554 ; 0000-0002-3683-8265 ; 0000-0001-8176-654X ; 0000-0001-6814-8886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8743561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8743561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gai, Yaohui</creatorcontrib><creatorcontrib>Widmer, James D.</creatorcontrib><creatorcontrib>Steven, Andrew</creatorcontrib><creatorcontrib>Chong, Yew Chuan</creatorcontrib><creatorcontrib>Kimiabeigi, Mohammad</creatorcontrib><creatorcontrib>Goss, James</creatorcontrib><creatorcontrib>Popescu, Mircea</creatorcontrib><title>Numerical and Experimental Calculation of CHTC in an Oil-Based Shaft Cooling System for a High-Speed High-Power PMSM</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>The convective heat transfer coefficient (CHTC) is a critical parameter that is required for developing an accurate and efficient thermal design of electrical machines. However, the existing empirical CHTC correlations are invalid for an oil-cooled hollow-shaft rotor. On this basis, a simplified numerical model based on computational fluid dynamics methods is developed in this paper to provide a qualitative understanding of the rotational effects on the convective heat transfer across a range of operation speeds. Then experiments are undertaken to validate the data obtained from numerical models and to estimate the impact parameters on the CHTC, such as the rotational velocity, coolant flow rate, and coolant temperature. On the basis of the numerical and the experimental results, it is concluded that the rotation can significantly increase the CHTC of the shaft inner wall surface above the level of the stationary condition. However, the axial flow rate and the viscosity of the coolant have less influence on convective heat transfer for the high rotational speeds. As a result of such analysis, a general correlation is defined by using Nusselt numbers as a function of rotational Reynolds numbers and Prandtl numbers.</description><subject>Axial flow</subject><subject>Computational fluid dynamics</subject><subject>computational fluid dynamics (CFD)</subject><subject>Convective heat transfer</subject><subject>convective heat transfer coefficient (CHTC)</subject><subject>Coolants</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Cooling systems</subject><subject>Correlation analysis</subject><subject>electrical machines</subject><subject>Empirical analysis</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Oils</subject><subject>Parameter estimation</subject><subject>Rotation</subject><subject>Rotors</subject><subject>Shafts</subject><subject>Temperature measurement</subject><subject>thermal analysis</subject><subject>Thermal design</subject><subject>Viscosity</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKf3gjcBrzuT06RNLrVMN9jcoPO6pE2ydXRN7Qe6f2_mxKvzwfOeAw9C95RMKCXyaTOfToBQOQEJIENxgUaU8ziQkolLNCIQi4AQFl2jm67bE0IZp3yE-vfhYNqyUBVWtcbT78ZPB1P3fpGoqhgq1Zeuxs7iZLZJcFl7Dq_KKnhRndE43Snb48S5qqy3OD12vTlg61qs8Kzc7oK0MZ76bdfuy7R4vUyXt-jKqqozd391jD5ep5tkFixWb_PkeREUIGkfUEIE5RSIKXQolTIsjyHXFEDYSEMcFVAQK4S0VhiwAHmegzZMF1pKkutwjB7Pd5vWfQ6m67O9G9rav8wg5EJSyhj3FDlTReu6rjU2a7wC1R4zSrKT28y7zU5usz-3PvJwjpTGmH9cxCzkEQ1_AIhndGA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Gai, Yaohui</creator><creator>Widmer, James D.</creator><creator>Steven, Andrew</creator><creator>Chong, Yew Chuan</creator><creator>Kimiabeigi, Mohammad</creator><creator>Goss, James</creator><creator>Popescu, Mircea</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6766-1554</orcidid><orcidid>https://orcid.org/0000-0002-3683-8265</orcidid><orcidid>https://orcid.org/0000-0001-8176-654X</orcidid><orcidid>https://orcid.org/0000-0001-6814-8886</orcidid></search><sort><creationdate>20200601</creationdate><title>Numerical and Experimental Calculation of CHTC in an Oil-Based Shaft Cooling System for a High-Speed High-Power PMSM</title><author>Gai, Yaohui ; Widmer, James D. ; Steven, Andrew ; Chong, Yew Chuan ; Kimiabeigi, Mohammad ; Goss, James ; Popescu, Mircea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-100815120ecd39aae4b72bd1228f6d276c2c0f889ff8e2f22bbb2de4dcd990bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Axial flow</topic><topic>Computational fluid dynamics</topic><topic>computational fluid dynamics (CFD)</topic><topic>Convective heat transfer</topic><topic>convective heat transfer coefficient (CHTC)</topic><topic>Coolants</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Cooling systems</topic><topic>Correlation analysis</topic><topic>electrical machines</topic><topic>Empirical analysis</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Oils</topic><topic>Parameter estimation</topic><topic>Rotation</topic><topic>Rotors</topic><topic>Shafts</topic><topic>Temperature measurement</topic><topic>thermal analysis</topic><topic>Thermal design</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gai, Yaohui</creatorcontrib><creatorcontrib>Widmer, James D.</creatorcontrib><creatorcontrib>Steven, Andrew</creatorcontrib><creatorcontrib>Chong, Yew Chuan</creatorcontrib><creatorcontrib>Kimiabeigi, Mohammad</creatorcontrib><creatorcontrib>Goss, James</creatorcontrib><creatorcontrib>Popescu, Mircea</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gai, Yaohui</au><au>Widmer, James D.</au><au>Steven, Andrew</au><au>Chong, Yew Chuan</au><au>Kimiabeigi, Mohammad</au><au>Goss, James</au><au>Popescu, Mircea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical and Experimental Calculation of CHTC in an Oil-Based Shaft Cooling System for a High-Speed High-Power PMSM</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>67</volume><issue>6</issue><spage>4371</spage><epage>4380</epage><pages>4371-4380</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>The convective heat transfer coefficient (CHTC) is a critical parameter that is required for developing an accurate and efficient thermal design of electrical machines. However, the existing empirical CHTC correlations are invalid for an oil-cooled hollow-shaft rotor. On this basis, a simplified numerical model based on computational fluid dynamics methods is developed in this paper to provide a qualitative understanding of the rotational effects on the convective heat transfer across a range of operation speeds. Then experiments are undertaken to validate the data obtained from numerical models and to estimate the impact parameters on the CHTC, such as the rotational velocity, coolant flow rate, and coolant temperature. On the basis of the numerical and the experimental results, it is concluded that the rotation can significantly increase the CHTC of the shaft inner wall surface above the level of the stationary condition. However, the axial flow rate and the viscosity of the coolant have less influence on convective heat transfer for the high rotational speeds. As a result of such analysis, a general correlation is defined by using Nusselt numbers as a function of rotational Reynolds numbers and Prandtl numbers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2019.2922938</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6766-1554</orcidid><orcidid>https://orcid.org/0000-0002-3683-8265</orcidid><orcidid>https://orcid.org/0000-0001-8176-654X</orcidid><orcidid>https://orcid.org/0000-0001-6814-8886</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2020-06, Vol.67 (6), p.4371-4380
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_8743561
source IEEE Electronic Library (IEL)
subjects Axial flow
Computational fluid dynamics
computational fluid dynamics (CFD)
Convective heat transfer
convective heat transfer coefficient (CHTC)
Coolants
Cooling
Cooling rate
Cooling systems
Correlation analysis
electrical machines
Empirical analysis
Flow velocity
Fluid flow
Heat transfer
Heat transfer coefficients
Mathematical models
Numerical models
Oils
Parameter estimation
Rotation
Rotors
Shafts
Temperature measurement
thermal analysis
Thermal design
Viscosity
title Numerical and Experimental Calculation of CHTC in an Oil-Based Shaft Cooling System for a High-Speed High-Power PMSM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20and%20Experimental%20Calculation%20of%20CHTC%20in%20an%20Oil-Based%20Shaft%20Cooling%20System%20for%20a%20High-Speed%20High-Power%20PMSM&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Gai,%20Yaohui&rft.date=2020-06-01&rft.volume=67&rft.issue=6&rft.spage=4371&rft.epage=4380&rft.pages=4371-4380&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2019.2922938&rft_dat=%3Cproquest_RIE%3E2358911445%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2358911445&rft_id=info:pmid/&rft_ieee_id=8743561&rfr_iscdi=true