Peak and Average Power Handling Capability of Microstrip Filters
In this paper, the power handling capability of microstrip filters is studied in detail. This paper is addressed from two perspectives, depending on the physical phenomenon limiting the maximum power that the microstrip filter can handle. One of these phenomena is air breakdown or corona effect, whi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2019-08, Vol.67 (8), p.3436-3448 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3448 |
---|---|
container_issue | 8 |
container_start_page | 3436 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 67 |
creator | Sanchez-Soriano, Miguel A. Quere, Yves Le Saux, Vincent Marini, Stephan Reglero, Marta S. Boria, Vicente E. Quendo, Cedric |
description | In this paper, the power handling capability of microstrip filters is studied in detail. This paper is addressed from two perspectives, depending on the physical phenomenon limiting the maximum power that the microstrip filter can handle. One of these phenomena is air breakdown or corona effect, which is linked to the peak power handling capability (PPHC) of the device, and the other is the self-heating, which limits the device average power handling capability (APHC). The analysis is focused on three kinds of filtering topologies widely used both in academia and industry, such as the coupled-line, stepped impedance resonator and the dual-behavior resonator-based filters. Closed-form expressions are computed to predict both the PPHC and the APHC as a function of the geometrical parameters of the resonators integrating the filter. Guidelines are also given to extrapolate the provided computations to other filtering topologies based on other kinds of resonators. To validate this research study, three bandpass filters centered at 5 GHz have been implemented and fully characterized by means of two measurements campaigns which have been carried out, one for the PPHC and another one for the APHC. The measured results have validated the performed study and corroborated the conclusions obtained throughout this paper. |
doi_str_mv | 10.1109/TMTT.2019.2919509 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8741078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8741078</ieee_id><sourcerecordid>2275628445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-596ec6fd0cfe6e507ca65b84256c330eee9b4e0c65e32a9cdb875dd4b8ab47f53</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsFY_gHhZ8OQhdXazf2-WYq3QYg_xvGySTd0am7hJK_32JqT0NMzw3uPND6F7AhNCQD8nqySZUCB6QjXRHPQFGhHOZaSFhEs0AiAq0kzBNbppmm23Mg5qhF7Wzn5ju8vx9OCC3Ti8rv5cwIvuVPrdBs9sbVNf-vaIqwKvfBaqpg2-xnNfti40t-iqsGXj7k5zjD7nr8lsES0_3t5n02WUxRLaiGvhMlHkkBVOOA4ys4KnilEusjgG55xOmYNMcBdTq7M8VZLnOUuVTZkseDxGT0Puly1NHfyPDUdTWW8W06Xpb0CJEpSqA-m0j4O2DtXv3jWt2Vb7sOvqGUolF1Qx1ieSQdW_1ARXnGMJmB6q6aGaHqo5Qe08D4PHd43PeiUZAanif1-LceA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275628445</pqid></control><display><type>article</type><title>Peak and Average Power Handling Capability of Microstrip Filters</title><source>IEEE Electronic Library (IEL)</source><creator>Sanchez-Soriano, Miguel A. ; Quere, Yves ; Le Saux, Vincent ; Marini, Stephan ; Reglero, Marta S. ; Boria, Vicente E. ; Quendo, Cedric</creator><creatorcontrib>Sanchez-Soriano, Miguel A. ; Quere, Yves ; Le Saux, Vincent ; Marini, Stephan ; Reglero, Marta S. ; Boria, Vicente E. ; Quendo, Cedric</creatorcontrib><description>In this paper, the power handling capability of microstrip filters is studied in detail. This paper is addressed from two perspectives, depending on the physical phenomenon limiting the maximum power that the microstrip filter can handle. One of these phenomena is air breakdown or corona effect, which is linked to the peak power handling capability (PPHC) of the device, and the other is the self-heating, which limits the device average power handling capability (APHC). The analysis is focused on three kinds of filtering topologies widely used both in academia and industry, such as the coupled-line, stepped impedance resonator and the dual-behavior resonator-based filters. Closed-form expressions are computed to predict both the PPHC and the APHC as a function of the geometrical parameters of the resonators integrating the filter. Guidelines are also given to extrapolate the provided computations to other filtering topologies based on other kinds of resonators. To validate this research study, three bandpass filters centered at 5 GHz have been implemented and fully characterized by means of two measurements campaigns which have been carried out, one for the PPHC and another one for the APHC. The measured results have validated the performed study and corroborated the conclusions obtained throughout this paper.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2019.2919509</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Average power handling capability (APHC) ; Bandpass filters ; Bandwidth ; Copying machines ; Corona ; coupled-line filter ; Electronic filters ; Electronics ; electrothermal analysis ; Engineering Sciences ; Handling ; Impedance ; Maximum power ; Microstrip devices ; microstrip filter ; Microstrip filters ; Microstrip resonators ; peak power handling capability (PPHC) ; power applications ; Resonators ; stepped-impedance resonator (SIR) ; Topology</subject><ispartof>IEEE transactions on microwave theory and techniques, 2019-08, Vol.67 (8), p.3436-3448</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-596ec6fd0cfe6e507ca65b84256c330eee9b4e0c65e32a9cdb875dd4b8ab47f53</citedby><cites>FETCH-LOGICAL-c370t-596ec6fd0cfe6e507ca65b84256c330eee9b4e0c65e32a9cdb875dd4b8ab47f53</cites><orcidid>0000-0001-7029-2393 ; 0000-0001-7150-9785 ; 0000-0003-1954-5177 ; 0000-0002-3811-843X ; 0000-0002-4937-2660 ; 0000-0002-6278-6390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8741078$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,781,785,797,886,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8741078$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02186228$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez-Soriano, Miguel A.</creatorcontrib><creatorcontrib>Quere, Yves</creatorcontrib><creatorcontrib>Le Saux, Vincent</creatorcontrib><creatorcontrib>Marini, Stephan</creatorcontrib><creatorcontrib>Reglero, Marta S.</creatorcontrib><creatorcontrib>Boria, Vicente E.</creatorcontrib><creatorcontrib>Quendo, Cedric</creatorcontrib><title>Peak and Average Power Handling Capability of Microstrip Filters</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>In this paper, the power handling capability of microstrip filters is studied in detail. This paper is addressed from two perspectives, depending on the physical phenomenon limiting the maximum power that the microstrip filter can handle. One of these phenomena is air breakdown or corona effect, which is linked to the peak power handling capability (PPHC) of the device, and the other is the self-heating, which limits the device average power handling capability (APHC). The analysis is focused on three kinds of filtering topologies widely used both in academia and industry, such as the coupled-line, stepped impedance resonator and the dual-behavior resonator-based filters. Closed-form expressions are computed to predict both the PPHC and the APHC as a function of the geometrical parameters of the resonators integrating the filter. Guidelines are also given to extrapolate the provided computations to other filtering topologies based on other kinds of resonators. To validate this research study, three bandpass filters centered at 5 GHz have been implemented and fully characterized by means of two measurements campaigns which have been carried out, one for the PPHC and another one for the APHC. The measured results have validated the performed study and corroborated the conclusions obtained throughout this paper.</description><subject>Average power handling capability (APHC)</subject><subject>Bandpass filters</subject><subject>Bandwidth</subject><subject>Copying machines</subject><subject>Corona</subject><subject>coupled-line filter</subject><subject>Electronic filters</subject><subject>Electronics</subject><subject>electrothermal analysis</subject><subject>Engineering Sciences</subject><subject>Handling</subject><subject>Impedance</subject><subject>Maximum power</subject><subject>Microstrip devices</subject><subject>microstrip filter</subject><subject>Microstrip filters</subject><subject>Microstrip resonators</subject><subject>peak power handling capability (PPHC)</subject><subject>power applications</subject><subject>Resonators</subject><subject>stepped-impedance resonator (SIR)</subject><subject>Topology</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AQxRdRsFY_gHhZ8OQhdXazf2-WYq3QYg_xvGySTd0am7hJK_32JqT0NMzw3uPND6F7AhNCQD8nqySZUCB6QjXRHPQFGhHOZaSFhEs0AiAq0kzBNbppmm23Mg5qhF7Wzn5ju8vx9OCC3Ti8rv5cwIvuVPrdBs9sbVNf-vaIqwKvfBaqpg2-xnNfti40t-iqsGXj7k5zjD7nr8lsES0_3t5n02WUxRLaiGvhMlHkkBVOOA4ys4KnilEusjgG55xOmYNMcBdTq7M8VZLnOUuVTZkseDxGT0Puly1NHfyPDUdTWW8W06Xpb0CJEpSqA-m0j4O2DtXv3jWt2Vb7sOvqGUolF1Qx1ieSQdW_1ARXnGMJmB6q6aGaHqo5Qe08D4PHd43PeiUZAanif1-LceA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Sanchez-Soriano, Miguel A.</creator><creator>Quere, Yves</creator><creator>Le Saux, Vincent</creator><creator>Marini, Stephan</creator><creator>Reglero, Marta S.</creator><creator>Boria, Vicente E.</creator><creator>Quendo, Cedric</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7029-2393</orcidid><orcidid>https://orcid.org/0000-0001-7150-9785</orcidid><orcidid>https://orcid.org/0000-0003-1954-5177</orcidid><orcidid>https://orcid.org/0000-0002-3811-843X</orcidid><orcidid>https://orcid.org/0000-0002-4937-2660</orcidid><orcidid>https://orcid.org/0000-0002-6278-6390</orcidid></search><sort><creationdate>20190801</creationdate><title>Peak and Average Power Handling Capability of Microstrip Filters</title><author>Sanchez-Soriano, Miguel A. ; Quere, Yves ; Le Saux, Vincent ; Marini, Stephan ; Reglero, Marta S. ; Boria, Vicente E. ; Quendo, Cedric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-596ec6fd0cfe6e507ca65b84256c330eee9b4e0c65e32a9cdb875dd4b8ab47f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Average power handling capability (APHC)</topic><topic>Bandpass filters</topic><topic>Bandwidth</topic><topic>Copying machines</topic><topic>Corona</topic><topic>coupled-line filter</topic><topic>Electronic filters</topic><topic>Electronics</topic><topic>electrothermal analysis</topic><topic>Engineering Sciences</topic><topic>Handling</topic><topic>Impedance</topic><topic>Maximum power</topic><topic>Microstrip devices</topic><topic>microstrip filter</topic><topic>Microstrip filters</topic><topic>Microstrip resonators</topic><topic>peak power handling capability (PPHC)</topic><topic>power applications</topic><topic>Resonators</topic><topic>stepped-impedance resonator (SIR)</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez-Soriano, Miguel A.</creatorcontrib><creatorcontrib>Quere, Yves</creatorcontrib><creatorcontrib>Le Saux, Vincent</creatorcontrib><creatorcontrib>Marini, Stephan</creatorcontrib><creatorcontrib>Reglero, Marta S.</creatorcontrib><creatorcontrib>Boria, Vicente E.</creatorcontrib><creatorcontrib>Quendo, Cedric</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sanchez-Soriano, Miguel A.</au><au>Quere, Yves</au><au>Le Saux, Vincent</au><au>Marini, Stephan</au><au>Reglero, Marta S.</au><au>Boria, Vicente E.</au><au>Quendo, Cedric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peak and Average Power Handling Capability of Microstrip Filters</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>67</volume><issue>8</issue><spage>3436</spage><epage>3448</epage><pages>3436-3448</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>In this paper, the power handling capability of microstrip filters is studied in detail. This paper is addressed from two perspectives, depending on the physical phenomenon limiting the maximum power that the microstrip filter can handle. One of these phenomena is air breakdown or corona effect, which is linked to the peak power handling capability (PPHC) of the device, and the other is the self-heating, which limits the device average power handling capability (APHC). The analysis is focused on three kinds of filtering topologies widely used both in academia and industry, such as the coupled-line, stepped impedance resonator and the dual-behavior resonator-based filters. Closed-form expressions are computed to predict both the PPHC and the APHC as a function of the geometrical parameters of the resonators integrating the filter. Guidelines are also given to extrapolate the provided computations to other filtering topologies based on other kinds of resonators. To validate this research study, three bandpass filters centered at 5 GHz have been implemented and fully characterized by means of two measurements campaigns which have been carried out, one for the PPHC and another one for the APHC. The measured results have validated the performed study and corroborated the conclusions obtained throughout this paper.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2019.2919509</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7029-2393</orcidid><orcidid>https://orcid.org/0000-0001-7150-9785</orcidid><orcidid>https://orcid.org/0000-0003-1954-5177</orcidid><orcidid>https://orcid.org/0000-0002-3811-843X</orcidid><orcidid>https://orcid.org/0000-0002-4937-2660</orcidid><orcidid>https://orcid.org/0000-0002-6278-6390</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2019-08, Vol.67 (8), p.3436-3448 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_ieee_primary_8741078 |
source | IEEE Electronic Library (IEL) |
subjects | Average power handling capability (APHC) Bandpass filters Bandwidth Copying machines Corona coupled-line filter Electronic filters Electronics electrothermal analysis Engineering Sciences Handling Impedance Maximum power Microstrip devices microstrip filter Microstrip filters Microstrip resonators peak power handling capability (PPHC) power applications Resonators stepped-impedance resonator (SIR) Topology |
title | Peak and Average Power Handling Capability of Microstrip Filters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peak%20and%20Average%20Power%20Handling%20Capability%20of%20Microstrip%20Filters&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Sanchez-Soriano,%20Miguel%20A.&rft.date=2019-08-01&rft.volume=67&rft.issue=8&rft.spage=3436&rft.epage=3448&rft.pages=3436-3448&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2019.2919509&rft_dat=%3Cproquest_RIE%3E2275628445%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275628445&rft_id=info:pmid/&rft_ieee_id=8741078&rfr_iscdi=true |