Peak and Average Power Handling Capability of Microstrip Filters

In this paper, the power handling capability of microstrip filters is studied in detail. This paper is addressed from two perspectives, depending on the physical phenomenon limiting the maximum power that the microstrip filter can handle. One of these phenomena is air breakdown or corona effect, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2019-08, Vol.67 (8), p.3436-3448
Hauptverfasser: Sanchez-Soriano, Miguel A., Quere, Yves, Le Saux, Vincent, Marini, Stephan, Reglero, Marta S., Boria, Vicente E., Quendo, Cedric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3448
container_issue 8
container_start_page 3436
container_title IEEE transactions on microwave theory and techniques
container_volume 67
creator Sanchez-Soriano, Miguel A.
Quere, Yves
Le Saux, Vincent
Marini, Stephan
Reglero, Marta S.
Boria, Vicente E.
Quendo, Cedric
description In this paper, the power handling capability of microstrip filters is studied in detail. This paper is addressed from two perspectives, depending on the physical phenomenon limiting the maximum power that the microstrip filter can handle. One of these phenomena is air breakdown or corona effect, which is linked to the peak power handling capability (PPHC) of the device, and the other is the self-heating, which limits the device average power handling capability (APHC). The analysis is focused on three kinds of filtering topologies widely used both in academia and industry, such as the coupled-line, stepped impedance resonator and the dual-behavior resonator-based filters. Closed-form expressions are computed to predict both the PPHC and the APHC as a function of the geometrical parameters of the resonators integrating the filter. Guidelines are also given to extrapolate the provided computations to other filtering topologies based on other kinds of resonators. To validate this research study, three bandpass filters centered at 5 GHz have been implemented and fully characterized by means of two measurements campaigns which have been carried out, one for the PPHC and another one for the APHC. The measured results have validated the performed study and corroborated the conclusions obtained throughout this paper.
doi_str_mv 10.1109/TMTT.2019.2919509
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8741078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8741078</ieee_id><sourcerecordid>2275628445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-596ec6fd0cfe6e507ca65b84256c330eee9b4e0c65e32a9cdb875dd4b8ab47f53</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsFY_gHhZ8OQhdXazf2-WYq3QYg_xvGySTd0am7hJK_32JqT0NMzw3uPND6F7AhNCQD8nqySZUCB6QjXRHPQFGhHOZaSFhEs0AiAq0kzBNbppmm23Mg5qhF7Wzn5ju8vx9OCC3Ti8rv5cwIvuVPrdBs9sbVNf-vaIqwKvfBaqpg2-xnNfti40t-iqsGXj7k5zjD7nr8lsES0_3t5n02WUxRLaiGvhMlHkkBVOOA4ys4KnilEusjgG55xOmYNMcBdTq7M8VZLnOUuVTZkseDxGT0Puly1NHfyPDUdTWW8W06Xpb0CJEpSqA-m0j4O2DtXv3jWt2Vb7sOvqGUolF1Qx1ieSQdW_1ARXnGMJmB6q6aGaHqo5Qe08D4PHd43PeiUZAanif1-LceA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275628445</pqid></control><display><type>article</type><title>Peak and Average Power Handling Capability of Microstrip Filters</title><source>IEEE Electronic Library (IEL)</source><creator>Sanchez-Soriano, Miguel A. ; Quere, Yves ; Le Saux, Vincent ; Marini, Stephan ; Reglero, Marta S. ; Boria, Vicente E. ; Quendo, Cedric</creator><creatorcontrib>Sanchez-Soriano, Miguel A. ; Quere, Yves ; Le Saux, Vincent ; Marini, Stephan ; Reglero, Marta S. ; Boria, Vicente E. ; Quendo, Cedric</creatorcontrib><description>In this paper, the power handling capability of microstrip filters is studied in detail. This paper is addressed from two perspectives, depending on the physical phenomenon limiting the maximum power that the microstrip filter can handle. One of these phenomena is air breakdown or corona effect, which is linked to the peak power handling capability (PPHC) of the device, and the other is the self-heating, which limits the device average power handling capability (APHC). The analysis is focused on three kinds of filtering topologies widely used both in academia and industry, such as the coupled-line, stepped impedance resonator and the dual-behavior resonator-based filters. Closed-form expressions are computed to predict both the PPHC and the APHC as a function of the geometrical parameters of the resonators integrating the filter. Guidelines are also given to extrapolate the provided computations to other filtering topologies based on other kinds of resonators. To validate this research study, three bandpass filters centered at 5 GHz have been implemented and fully characterized by means of two measurements campaigns which have been carried out, one for the PPHC and another one for the APHC. The measured results have validated the performed study and corroborated the conclusions obtained throughout this paper.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2019.2919509</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Average power handling capability (APHC) ; Bandpass filters ; Bandwidth ; Copying machines ; Corona ; coupled-line filter ; Electronic filters ; Electronics ; electrothermal analysis ; Engineering Sciences ; Handling ; Impedance ; Maximum power ; Microstrip devices ; microstrip filter ; Microstrip filters ; Microstrip resonators ; peak power handling capability (PPHC) ; power applications ; Resonators ; stepped-impedance resonator (SIR) ; Topology</subject><ispartof>IEEE transactions on microwave theory and techniques, 2019-08, Vol.67 (8), p.3436-3448</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-596ec6fd0cfe6e507ca65b84256c330eee9b4e0c65e32a9cdb875dd4b8ab47f53</citedby><cites>FETCH-LOGICAL-c370t-596ec6fd0cfe6e507ca65b84256c330eee9b4e0c65e32a9cdb875dd4b8ab47f53</cites><orcidid>0000-0001-7029-2393 ; 0000-0001-7150-9785 ; 0000-0003-1954-5177 ; 0000-0002-3811-843X ; 0000-0002-4937-2660 ; 0000-0002-6278-6390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8741078$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,781,785,797,886,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8741078$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02186228$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez-Soriano, Miguel A.</creatorcontrib><creatorcontrib>Quere, Yves</creatorcontrib><creatorcontrib>Le Saux, Vincent</creatorcontrib><creatorcontrib>Marini, Stephan</creatorcontrib><creatorcontrib>Reglero, Marta S.</creatorcontrib><creatorcontrib>Boria, Vicente E.</creatorcontrib><creatorcontrib>Quendo, Cedric</creatorcontrib><title>Peak and Average Power Handling Capability of Microstrip Filters</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>In this paper, the power handling capability of microstrip filters is studied in detail. This paper is addressed from two perspectives, depending on the physical phenomenon limiting the maximum power that the microstrip filter can handle. One of these phenomena is air breakdown or corona effect, which is linked to the peak power handling capability (PPHC) of the device, and the other is the self-heating, which limits the device average power handling capability (APHC). The analysis is focused on three kinds of filtering topologies widely used both in academia and industry, such as the coupled-line, stepped impedance resonator and the dual-behavior resonator-based filters. Closed-form expressions are computed to predict both the PPHC and the APHC as a function of the geometrical parameters of the resonators integrating the filter. Guidelines are also given to extrapolate the provided computations to other filtering topologies based on other kinds of resonators. To validate this research study, three bandpass filters centered at 5 GHz have been implemented and fully characterized by means of two measurements campaigns which have been carried out, one for the PPHC and another one for the APHC. The measured results have validated the performed study and corroborated the conclusions obtained throughout this paper.</description><subject>Average power handling capability (APHC)</subject><subject>Bandpass filters</subject><subject>Bandwidth</subject><subject>Copying machines</subject><subject>Corona</subject><subject>coupled-line filter</subject><subject>Electronic filters</subject><subject>Electronics</subject><subject>electrothermal analysis</subject><subject>Engineering Sciences</subject><subject>Handling</subject><subject>Impedance</subject><subject>Maximum power</subject><subject>Microstrip devices</subject><subject>microstrip filter</subject><subject>Microstrip filters</subject><subject>Microstrip resonators</subject><subject>peak power handling capability (PPHC)</subject><subject>power applications</subject><subject>Resonators</subject><subject>stepped-impedance resonator (SIR)</subject><subject>Topology</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AQxRdRsFY_gHhZ8OQhdXazf2-WYq3QYg_xvGySTd0am7hJK_32JqT0NMzw3uPND6F7AhNCQD8nqySZUCB6QjXRHPQFGhHOZaSFhEs0AiAq0kzBNbppmm23Mg5qhF7Wzn5ju8vx9OCC3Ti8rv5cwIvuVPrdBs9sbVNf-vaIqwKvfBaqpg2-xnNfti40t-iqsGXj7k5zjD7nr8lsES0_3t5n02WUxRLaiGvhMlHkkBVOOA4ys4KnilEusjgG55xOmYNMcBdTq7M8VZLnOUuVTZkseDxGT0Puly1NHfyPDUdTWW8W06Xpb0CJEpSqA-m0j4O2DtXv3jWt2Vb7sOvqGUolF1Qx1ieSQdW_1ARXnGMJmB6q6aGaHqo5Qe08D4PHd43PeiUZAanif1-LceA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Sanchez-Soriano, Miguel A.</creator><creator>Quere, Yves</creator><creator>Le Saux, Vincent</creator><creator>Marini, Stephan</creator><creator>Reglero, Marta S.</creator><creator>Boria, Vicente E.</creator><creator>Quendo, Cedric</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7029-2393</orcidid><orcidid>https://orcid.org/0000-0001-7150-9785</orcidid><orcidid>https://orcid.org/0000-0003-1954-5177</orcidid><orcidid>https://orcid.org/0000-0002-3811-843X</orcidid><orcidid>https://orcid.org/0000-0002-4937-2660</orcidid><orcidid>https://orcid.org/0000-0002-6278-6390</orcidid></search><sort><creationdate>20190801</creationdate><title>Peak and Average Power Handling Capability of Microstrip Filters</title><author>Sanchez-Soriano, Miguel A. ; Quere, Yves ; Le Saux, Vincent ; Marini, Stephan ; Reglero, Marta S. ; Boria, Vicente E. ; Quendo, Cedric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-596ec6fd0cfe6e507ca65b84256c330eee9b4e0c65e32a9cdb875dd4b8ab47f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Average power handling capability (APHC)</topic><topic>Bandpass filters</topic><topic>Bandwidth</topic><topic>Copying machines</topic><topic>Corona</topic><topic>coupled-line filter</topic><topic>Electronic filters</topic><topic>Electronics</topic><topic>electrothermal analysis</topic><topic>Engineering Sciences</topic><topic>Handling</topic><topic>Impedance</topic><topic>Maximum power</topic><topic>Microstrip devices</topic><topic>microstrip filter</topic><topic>Microstrip filters</topic><topic>Microstrip resonators</topic><topic>peak power handling capability (PPHC)</topic><topic>power applications</topic><topic>Resonators</topic><topic>stepped-impedance resonator (SIR)</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez-Soriano, Miguel A.</creatorcontrib><creatorcontrib>Quere, Yves</creatorcontrib><creatorcontrib>Le Saux, Vincent</creatorcontrib><creatorcontrib>Marini, Stephan</creatorcontrib><creatorcontrib>Reglero, Marta S.</creatorcontrib><creatorcontrib>Boria, Vicente E.</creatorcontrib><creatorcontrib>Quendo, Cedric</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sanchez-Soriano, Miguel A.</au><au>Quere, Yves</au><au>Le Saux, Vincent</au><au>Marini, Stephan</au><au>Reglero, Marta S.</au><au>Boria, Vicente E.</au><au>Quendo, Cedric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peak and Average Power Handling Capability of Microstrip Filters</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>67</volume><issue>8</issue><spage>3436</spage><epage>3448</epage><pages>3436-3448</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>In this paper, the power handling capability of microstrip filters is studied in detail. This paper is addressed from two perspectives, depending on the physical phenomenon limiting the maximum power that the microstrip filter can handle. One of these phenomena is air breakdown or corona effect, which is linked to the peak power handling capability (PPHC) of the device, and the other is the self-heating, which limits the device average power handling capability (APHC). The analysis is focused on three kinds of filtering topologies widely used both in academia and industry, such as the coupled-line, stepped impedance resonator and the dual-behavior resonator-based filters. Closed-form expressions are computed to predict both the PPHC and the APHC as a function of the geometrical parameters of the resonators integrating the filter. Guidelines are also given to extrapolate the provided computations to other filtering topologies based on other kinds of resonators. To validate this research study, three bandpass filters centered at 5 GHz have been implemented and fully characterized by means of two measurements campaigns which have been carried out, one for the PPHC and another one for the APHC. The measured results have validated the performed study and corroborated the conclusions obtained throughout this paper.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2019.2919509</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7029-2393</orcidid><orcidid>https://orcid.org/0000-0001-7150-9785</orcidid><orcidid>https://orcid.org/0000-0003-1954-5177</orcidid><orcidid>https://orcid.org/0000-0002-3811-843X</orcidid><orcidid>https://orcid.org/0000-0002-4937-2660</orcidid><orcidid>https://orcid.org/0000-0002-6278-6390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2019-08, Vol.67 (8), p.3436-3448
issn 0018-9480
1557-9670
language eng
recordid cdi_ieee_primary_8741078
source IEEE Electronic Library (IEL)
subjects Average power handling capability (APHC)
Bandpass filters
Bandwidth
Copying machines
Corona
coupled-line filter
Electronic filters
Electronics
electrothermal analysis
Engineering Sciences
Handling
Impedance
Maximum power
Microstrip devices
microstrip filter
Microstrip filters
Microstrip resonators
peak power handling capability (PPHC)
power applications
Resonators
stepped-impedance resonator (SIR)
Topology
title Peak and Average Power Handling Capability of Microstrip Filters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peak%20and%20Average%20Power%20Handling%20Capability%20of%20Microstrip%20Filters&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Sanchez-Soriano,%20Miguel%20A.&rft.date=2019-08-01&rft.volume=67&rft.issue=8&rft.spage=3436&rft.epage=3448&rft.pages=3436-3448&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2019.2919509&rft_dat=%3Cproquest_RIE%3E2275628445%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275628445&rft_id=info:pmid/&rft_ieee_id=8741078&rfr_iscdi=true