Guest Editorial Emerging Computing Offloading for IoTs: Architectures, Technologies, and Applications

Billions of Internet of Things (IoT) devices, e.g., sensors and RFIDs, are arising around us providing not only computing-intensive, but also delay-sensitive services, ranging from augmented/virtual realities to distributed data analysis and artificial intelligence. Notably, the low response latency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2019-06, Vol.6 (3), p.3987-3993
Hauptverfasser: Cao, Jiannong, Zhang, Deyu, Zhou, Haibo, Wan, Peng-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3993
container_issue 3
container_start_page 3987
container_title IEEE internet of things journal
container_volume 6
creator Cao, Jiannong
Zhang, Deyu
Zhou, Haibo
Wan, Peng-Jun
description Billions of Internet of Things (IoT) devices, e.g., sensors and RFIDs, are arising around us providing not only computing-intensive, but also delay-sensitive services, ranging from augmented/virtual realities to distributed data analysis and artificial intelligence. Notably, the low response latency for IoT services is achieved at the cost of computing complexity that far exceeds the capabilities of IoT devices. To feed this trend, multiple computing paradigms are emerging, such as mobile transparent computing (TC), edge computing, and fog computing. These paradigms employ more resourceful edge devices, e.g., small-scale servers, smart phones, and laptops, to assist the low-end IoT devices. By offloading the computing-intensive tasks to the edge devices, it is expected to converge the data collection at IoT devices and the data processing at edge devices to provision computing-intensive and delay-sensitive services. However, many issues remain in the application of computing offloading which impede its flourishing in IoTs. To name a few, what are the killer APPs that need computing offloading for performance boost? How to partition an encapsulated APP into offloadable code blocks for remote loading? How to determine which code blocks or computing tasks should be offloaded to edge servers? How to customize the communication protocol to guarantee the coherence of computation offloading?
doi_str_mv 10.1109/JIOT.2019.2921217
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8738943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8738943</ieee_id><sourcerecordid>2244345381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2517-671da2a57d3da4070e80d6ba73bb1594966181bc8a78b4cbe8b3a76857b470733</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOOY-gPhS8NXW_GuS-jbGnJPBXupzSNJ0y-iamrQPfntbNsSney6ccy_nB8AjghlCsHj93O7LDENUZLjACCN-A2aYYJ5SxvDtP30PFjGeIIRjLEcFmwG7GWzsk3Xleh-capL12YaDaw_Jyp-7oZ_Uvq4br6pJ1j4kW1_Gt2QZzNH11vRDsPElKa05tr7xBzdtqq2SZdc1zqje-TY-gLtaNdEurnMOvt7X5eoj3e0329VylxqcI54yjiqFVc4rUikKObQCVkwrTrRGeUELxpBA2gjFhaZGW6GJ4kzkXFMOOSFz8Hy52wX_PRWTJz-EdnwpMaaU0JwINLrQxWWCjzHYWnbBnVX4kQjKCaicgMoJqLwCHTNPl4yz1v75BSeioIT8Ah0BcRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244345381</pqid></control><display><type>article</type><title>Guest Editorial Emerging Computing Offloading for IoTs: Architectures, Technologies, and Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Cao, Jiannong ; Zhang, Deyu ; Zhou, Haibo ; Wan, Peng-Jun</creator><creatorcontrib>Cao, Jiannong ; Zhang, Deyu ; Zhou, Haibo ; Wan, Peng-Jun</creatorcontrib><description>Billions of Internet of Things (IoT) devices, e.g., sensors and RFIDs, are arising around us providing not only computing-intensive, but also delay-sensitive services, ranging from augmented/virtual realities to distributed data analysis and artificial intelligence. Notably, the low response latency for IoT services is achieved at the cost of computing complexity that far exceeds the capabilities of IoT devices. To feed this trend, multiple computing paradigms are emerging, such as mobile transparent computing (TC), edge computing, and fog computing. These paradigms employ more resourceful edge devices, e.g., small-scale servers, smart phones, and laptops, to assist the low-end IoT devices. By offloading the computing-intensive tasks to the edge devices, it is expected to converge the data collection at IoT devices and the data processing at edge devices to provision computing-intensive and delay-sensitive services. However, many issues remain in the application of computing offloading which impede its flourishing in IoTs. To name a few, what are the killer APPs that need computing offloading for performance boost? How to partition an encapsulated APP into offloadable code blocks for remote loading? How to determine which code blocks or computing tasks should be offloaded to edge servers? How to customize the communication protocol to guarantee the coherence of computation offloading?</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2019.2921217</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Cloud computing ; Computation offloading ; Computing costs ; Data acquisition ; Data analysis ; Data processing ; Delay ; Distributed computing ; Edge computing ; Electronic devices ; Intelligent sensors ; Internet of Things ; Mobile computing ; Radiofrequency identification ; Servers ; Smartphones ; Special issues and sections</subject><ispartof>IEEE internet of things journal, 2019-06, Vol.6 (3), p.3987-3993</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2517-671da2a57d3da4070e80d6ba73bb1594966181bc8a78b4cbe8b3a76857b470733</citedby><orcidid>0000-0002-2725-2529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8738943$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8738943$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao, Jiannong</creatorcontrib><creatorcontrib>Zhang, Deyu</creatorcontrib><creatorcontrib>Zhou, Haibo</creatorcontrib><creatorcontrib>Wan, Peng-Jun</creatorcontrib><title>Guest Editorial Emerging Computing Offloading for IoTs: Architectures, Technologies, and Applications</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Billions of Internet of Things (IoT) devices, e.g., sensors and RFIDs, are arising around us providing not only computing-intensive, but also delay-sensitive services, ranging from augmented/virtual realities to distributed data analysis and artificial intelligence. Notably, the low response latency for IoT services is achieved at the cost of computing complexity that far exceeds the capabilities of IoT devices. To feed this trend, multiple computing paradigms are emerging, such as mobile transparent computing (TC), edge computing, and fog computing. These paradigms employ more resourceful edge devices, e.g., small-scale servers, smart phones, and laptops, to assist the low-end IoT devices. By offloading the computing-intensive tasks to the edge devices, it is expected to converge the data collection at IoT devices and the data processing at edge devices to provision computing-intensive and delay-sensitive services. However, many issues remain in the application of computing offloading which impede its flourishing in IoTs. To name a few, what are the killer APPs that need computing offloading for performance boost? How to partition an encapsulated APP into offloadable code blocks for remote loading? How to determine which code blocks or computing tasks should be offloaded to edge servers? How to customize the communication protocol to guarantee the coherence of computation offloading?</description><subject>Artificial intelligence</subject><subject>Cloud computing</subject><subject>Computation offloading</subject><subject>Computing costs</subject><subject>Data acquisition</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Delay</subject><subject>Distributed computing</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Intelligent sensors</subject><subject>Internet of Things</subject><subject>Mobile computing</subject><subject>Radiofrequency identification</subject><subject>Servers</subject><subject>Smartphones</subject><subject>Special issues and sections</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF9LwzAUxYMoOOY-gPhS8NXW_GuS-jbGnJPBXupzSNJ0y-iamrQPfntbNsSney6ccy_nB8AjghlCsHj93O7LDENUZLjACCN-A2aYYJ5SxvDtP30PFjGeIIRjLEcFmwG7GWzsk3Xleh-capL12YaDaw_Jyp-7oZ_Uvq4br6pJ1j4kW1_Gt2QZzNH11vRDsPElKa05tr7xBzdtqq2SZdc1zqje-TY-gLtaNdEurnMOvt7X5eoj3e0329VylxqcI54yjiqFVc4rUikKObQCVkwrTrRGeUELxpBA2gjFhaZGW6GJ4kzkXFMOOSFz8Hy52wX_PRWTJz-EdnwpMaaU0JwINLrQxWWCjzHYWnbBnVX4kQjKCaicgMoJqLwCHTNPl4yz1v75BSeioIT8Ah0BcRM</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Cao, Jiannong</creator><creator>Zhang, Deyu</creator><creator>Zhou, Haibo</creator><creator>Wan, Peng-Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2725-2529</orcidid></search><sort><creationdate>20190601</creationdate><title>Guest Editorial Emerging Computing Offloading for IoTs: Architectures, Technologies, and Applications</title><author>Cao, Jiannong ; Zhang, Deyu ; Zhou, Haibo ; Wan, Peng-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2517-671da2a57d3da4070e80d6ba73bb1594966181bc8a78b4cbe8b3a76857b470733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Cloud computing</topic><topic>Computation offloading</topic><topic>Computing costs</topic><topic>Data acquisition</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Delay</topic><topic>Distributed computing</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Intelligent sensors</topic><topic>Internet of Things</topic><topic>Mobile computing</topic><topic>Radiofrequency identification</topic><topic>Servers</topic><topic>Smartphones</topic><topic>Special issues and sections</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Jiannong</creatorcontrib><creatorcontrib>Zhang, Deyu</creatorcontrib><creatorcontrib>Zhou, Haibo</creatorcontrib><creatorcontrib>Wan, Peng-Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao, Jiannong</au><au>Zhang, Deyu</au><au>Zhou, Haibo</au><au>Wan, Peng-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guest Editorial Emerging Computing Offloading for IoTs: Architectures, Technologies, and Applications</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>6</volume><issue>3</issue><spage>3987</spage><epage>3993</epage><pages>3987-3993</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Billions of Internet of Things (IoT) devices, e.g., sensors and RFIDs, are arising around us providing not only computing-intensive, but also delay-sensitive services, ranging from augmented/virtual realities to distributed data analysis and artificial intelligence. Notably, the low response latency for IoT services is achieved at the cost of computing complexity that far exceeds the capabilities of IoT devices. To feed this trend, multiple computing paradigms are emerging, such as mobile transparent computing (TC), edge computing, and fog computing. These paradigms employ more resourceful edge devices, e.g., small-scale servers, smart phones, and laptops, to assist the low-end IoT devices. By offloading the computing-intensive tasks to the edge devices, it is expected to converge the data collection at IoT devices and the data processing at edge devices to provision computing-intensive and delay-sensitive services. However, many issues remain in the application of computing offloading which impede its flourishing in IoTs. To name a few, what are the killer APPs that need computing offloading for performance boost? How to partition an encapsulated APP into offloadable code blocks for remote loading? How to determine which code blocks or computing tasks should be offloaded to edge servers? How to customize the communication protocol to guarantee the coherence of computation offloading?</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2019.2921217</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2725-2529</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2019-06, Vol.6 (3), p.3987-3993
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_8738943
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Cloud computing
Computation offloading
Computing costs
Data acquisition
Data analysis
Data processing
Delay
Distributed computing
Edge computing
Electronic devices
Intelligent sensors
Internet of Things
Mobile computing
Radiofrequency identification
Servers
Smartphones
Special issues and sections
title Guest Editorial Emerging Computing Offloading for IoTs: Architectures, Technologies, and Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guest%20Editorial%20Emerging%20Computing%20Offloading%20for%20IoTs:%20Architectures,%20Technologies,%20and%20Applications&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Cao,%20Jiannong&rft.date=2019-06-01&rft.volume=6&rft.issue=3&rft.spage=3987&rft.epage=3993&rft.pages=3987-3993&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2019.2921217&rft_dat=%3Cproquest_RIE%3E2244345381%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244345381&rft_id=info:pmid/&rft_ieee_id=8738943&rfr_iscdi=true