Fourier-Based Rotation-Invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection
Geospatial object detection (GOD) of remote sensing imagery has been attracting increasing interest in recent years, due to the rapid development in spaceborne imaging. Most of the previously proposed object detectors are very sensitive to object deformations, such as scaling and rotation. To this e...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2020-02, Vol.17 (2), p.302-306 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 306 |
---|---|
container_issue | 2 |
container_start_page | 302 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 17 |
creator | Wu, Xin Hong, Danfeng Chanussot, Jocelyn Xu, Yang Tao, Ran Wang, Yue |
description | Geospatial object detection (GOD) of remote sensing imagery has been attracting increasing interest in recent years, due to the rapid development in spaceborne imaging. Most of the previously proposed object detectors are very sensitive to object deformations, such as scaling and rotation. To this end, we propose a novel and efficient framework for GOD in this letter, called Fourier-based rotation-invariant feature boosting (FRIFB). A Fourier-based rotation-invariant feature is first generated in polar coordinate. Then, the extracted features can be further structurally refined using aggregate channel features. This leads to a faster feature computation and more robust feature representation, which is good fitting for the coming boosting learning. Finally, in the test phase, we achieve a fast pyramid feature extraction by estimating a scale factor instead of directly collecting all features from the image pyramid. Extensive experiments are conducted on two subsets of NWPU VHR-10 data set, demonstrating the superiority and effectiveness of the FRIFB compared to the previous state-of-the-art methods. |
doi_str_mv | 10.1109/LGRS.2019.2919755 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8737724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8737724</ieee_id><sourcerecordid>2345513983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-2dd43d0edf2bf74261a771e654e2b9877dcc86af37065bc578a135bf607266e3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRUKs_QLwEPHnYms9N1lut_YKCoD14C9ndiabWTU3Siv_eXSqeZph55mV4suyK4CEhuLxbzp5fhhSTckhLUkohjrIzIoTKsZDkuO-5yEWpXk-z8xjXGFOulDzL3NTvgoOQP5gIDXr2ySTn23zR7k1wpk1oCibtAqAH72Ny7ds9GrVoYq2rHfTrYD7h24cPZH1AM_Bx2yWYDXqq1lAn9AipK13kRXZizSbC5V8dZKvpZDWe58un2WI8WuY1K1nKadNw1mBoLK2s5LQgRkoCheBAq1JJ2dS1KoxlEheiqoVUhjBR2QJLWhTABtntIfbdbPQ2uE8TfrQ3Ts9HS93PMGVYck73tGNvDuw2-K8dxKTXnY22-05TxoUgrFSso8iBqoOPMYD9jyVY9_J1L1_38vWf_O7m-nDjAOCfV5JJSTn7BaicgBU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2345513983</pqid></control><display><type>article</type><title>Fourier-Based Rotation-Invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Xin ; Hong, Danfeng ; Chanussot, Jocelyn ; Xu, Yang ; Tao, Ran ; Wang, Yue</creator><creatorcontrib>Wu, Xin ; Hong, Danfeng ; Chanussot, Jocelyn ; Xu, Yang ; Tao, Ran ; Wang, Yue</creatorcontrib><description>Geospatial object detection (GOD) of remote sensing imagery has been attracting increasing interest in recent years, due to the rapid development in spaceborne imaging. Most of the previously proposed object detectors are very sensitive to object deformations, such as scaling and rotation. To this end, we propose a novel and efficient framework for GOD in this letter, called Fourier-based rotation-invariant feature boosting (FRIFB). A Fourier-based rotation-invariant feature is first generated in polar coordinate. Then, the extracted features can be further structurally refined using aggregate channel features. This leads to a faster feature computation and more robust feature representation, which is good fitting for the coming boosting learning. Finally, in the test phase, we achieve a fast pyramid feature extraction by estimating a scale factor instead of directly collecting all features from the image pyramid. Extensive experiments are conducted on two subsets of NWPU VHR-10 data set, demonstrating the superiority and effectiveness of the FRIFB compared to the previous state-of-the-art methods.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2019.2919755</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aggregate channel features (ACFs) ; Boosting ; Computation ; Detection ; Detectors ; Engineering Sciences ; Feature extraction ; Fourier transformation ; Frequency modulation ; Geospatial analysis ; geospatial object detection (GOD) ; Image detection ; Imagery ; Imaging techniques ; Invariants ; Object detection ; Object recognition ; Polar coordinates ; Remote sensing ; Rotation ; rotation-invariant ; Scaling ; Signal and Image processing ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2020-02, Vol.17 (2), p.302-306</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-2dd43d0edf2bf74261a771e654e2b9877dcc86af37065bc578a135bf607266e3</citedby><cites>FETCH-LOGICAL-c393t-2dd43d0edf2bf74261a771e654e2b9877dcc86af37065bc578a135bf607266e3</cites><orcidid>0000-0002-5243-7189 ; 0000-0002-1733-3560 ; 0000-0002-3212-9584 ; 0000-0003-4817-2875 ; 0000-0002-5499-3728 ; 0000-0001-6230-3275 ; 0000-0003-3514-9705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8737724$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8737724$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02307442$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Hong, Danfeng</creatorcontrib><creatorcontrib>Chanussot, Jocelyn</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><title>Fourier-Based Rotation-Invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Geospatial object detection (GOD) of remote sensing imagery has been attracting increasing interest in recent years, due to the rapid development in spaceborne imaging. Most of the previously proposed object detectors are very sensitive to object deformations, such as scaling and rotation. To this end, we propose a novel and efficient framework for GOD in this letter, called Fourier-based rotation-invariant feature boosting (FRIFB). A Fourier-based rotation-invariant feature is first generated in polar coordinate. Then, the extracted features can be further structurally refined using aggregate channel features. This leads to a faster feature computation and more robust feature representation, which is good fitting for the coming boosting learning. Finally, in the test phase, we achieve a fast pyramid feature extraction by estimating a scale factor instead of directly collecting all features from the image pyramid. Extensive experiments are conducted on two subsets of NWPU VHR-10 data set, demonstrating the superiority and effectiveness of the FRIFB compared to the previous state-of-the-art methods.</description><subject>Aggregate channel features (ACFs)</subject><subject>Boosting</subject><subject>Computation</subject><subject>Detection</subject><subject>Detectors</subject><subject>Engineering Sciences</subject><subject>Feature extraction</subject><subject>Fourier transformation</subject><subject>Frequency modulation</subject><subject>Geospatial analysis</subject><subject>geospatial object detection (GOD)</subject><subject>Image detection</subject><subject>Imagery</subject><subject>Imaging techniques</subject><subject>Invariants</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Polar coordinates</subject><subject>Remote sensing</subject><subject>Rotation</subject><subject>rotation-invariant</subject><subject>Scaling</subject><subject>Signal and Image processing</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhhdRUKs_QLwEPHnYms9N1lut_YKCoD14C9ndiabWTU3Siv_eXSqeZph55mV4suyK4CEhuLxbzp5fhhSTckhLUkohjrIzIoTKsZDkuO-5yEWpXk-z8xjXGFOulDzL3NTvgoOQP5gIDXr2ySTn23zR7k1wpk1oCibtAqAH72Ny7ds9GrVoYq2rHfTrYD7h24cPZH1AM_Bx2yWYDXqq1lAn9AipK13kRXZizSbC5V8dZKvpZDWe58un2WI8WuY1K1nKadNw1mBoLK2s5LQgRkoCheBAq1JJ2dS1KoxlEheiqoVUhjBR2QJLWhTABtntIfbdbPQ2uE8TfrQ3Ts9HS93PMGVYck73tGNvDuw2-K8dxKTXnY22-05TxoUgrFSso8iBqoOPMYD9jyVY9_J1L1_38vWf_O7m-nDjAOCfV5JJSTn7BaicgBU</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Wu, Xin</creator><creator>Hong, Danfeng</creator><creator>Chanussot, Jocelyn</creator><creator>Xu, Yang</creator><creator>Tao, Ran</creator><creator>Wang, Yue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE - Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5243-7189</orcidid><orcidid>https://orcid.org/0000-0002-1733-3560</orcidid><orcidid>https://orcid.org/0000-0002-3212-9584</orcidid><orcidid>https://orcid.org/0000-0003-4817-2875</orcidid><orcidid>https://orcid.org/0000-0002-5499-3728</orcidid><orcidid>https://orcid.org/0000-0001-6230-3275</orcidid><orcidid>https://orcid.org/0000-0003-3514-9705</orcidid></search><sort><creationdate>20200201</creationdate><title>Fourier-Based Rotation-Invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection</title><author>Wu, Xin ; Hong, Danfeng ; Chanussot, Jocelyn ; Xu, Yang ; Tao, Ran ; Wang, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-2dd43d0edf2bf74261a771e654e2b9877dcc86af37065bc578a135bf607266e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregate channel features (ACFs)</topic><topic>Boosting</topic><topic>Computation</topic><topic>Detection</topic><topic>Detectors</topic><topic>Engineering Sciences</topic><topic>Feature extraction</topic><topic>Fourier transformation</topic><topic>Frequency modulation</topic><topic>Geospatial analysis</topic><topic>geospatial object detection (GOD)</topic><topic>Image detection</topic><topic>Imagery</topic><topic>Imaging techniques</topic><topic>Invariants</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Polar coordinates</topic><topic>Remote sensing</topic><topic>Rotation</topic><topic>rotation-invariant</topic><topic>Scaling</topic><topic>Signal and Image processing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Hong, Danfeng</creatorcontrib><creatorcontrib>Chanussot, Jocelyn</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Xin</au><au>Hong, Danfeng</au><au>Chanussot, Jocelyn</au><au>Xu, Yang</au><au>Tao, Ran</au><au>Wang, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourier-Based Rotation-Invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>17</volume><issue>2</issue><spage>302</spage><epage>306</epage><pages>302-306</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Geospatial object detection (GOD) of remote sensing imagery has been attracting increasing interest in recent years, due to the rapid development in spaceborne imaging. Most of the previously proposed object detectors are very sensitive to object deformations, such as scaling and rotation. To this end, we propose a novel and efficient framework for GOD in this letter, called Fourier-based rotation-invariant feature boosting (FRIFB). A Fourier-based rotation-invariant feature is first generated in polar coordinate. Then, the extracted features can be further structurally refined using aggregate channel features. This leads to a faster feature computation and more robust feature representation, which is good fitting for the coming boosting learning. Finally, in the test phase, we achieve a fast pyramid feature extraction by estimating a scale factor instead of directly collecting all features from the image pyramid. Extensive experiments are conducted on two subsets of NWPU VHR-10 data set, demonstrating the superiority and effectiveness of the FRIFB compared to the previous state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2019.2919755</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5243-7189</orcidid><orcidid>https://orcid.org/0000-0002-1733-3560</orcidid><orcidid>https://orcid.org/0000-0002-3212-9584</orcidid><orcidid>https://orcid.org/0000-0003-4817-2875</orcidid><orcidid>https://orcid.org/0000-0002-5499-3728</orcidid><orcidid>https://orcid.org/0000-0001-6230-3275</orcidid><orcidid>https://orcid.org/0000-0003-3514-9705</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2020-02, Vol.17 (2), p.302-306 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_8737724 |
source | IEEE Electronic Library (IEL) |
subjects | Aggregate channel features (ACFs) Boosting Computation Detection Detectors Engineering Sciences Feature extraction Fourier transformation Frequency modulation Geospatial analysis geospatial object detection (GOD) Image detection Imagery Imaging techniques Invariants Object detection Object recognition Polar coordinates Remote sensing Rotation rotation-invariant Scaling Signal and Image processing Training |
title | Fourier-Based Rotation-Invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourier-Based%20Rotation-Invariant%20Feature%20Boosting:%20An%20Efficient%20Framework%20for%20Geospatial%20Object%20Detection&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Wu,%20Xin&rft.date=2020-02-01&rft.volume=17&rft.issue=2&rft.spage=302&rft.epage=306&rft.pages=302-306&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2019.2919755&rft_dat=%3Cproquest_RIE%3E2345513983%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2345513983&rft_id=info:pmid/&rft_ieee_id=8737724&rfr_iscdi=true |