Fourier-Based Rotation-Invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection

Geospatial object detection (GOD) of remote sensing imagery has been attracting increasing interest in recent years, due to the rapid development in spaceborne imaging. Most of the previously proposed object detectors are very sensitive to object deformations, such as scaling and rotation. To this e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2020-02, Vol.17 (2), p.302-306
Hauptverfasser: Wu, Xin, Hong, Danfeng, Chanussot, Jocelyn, Xu, Yang, Tao, Ran, Wang, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 306
container_issue 2
container_start_page 302
container_title IEEE geoscience and remote sensing letters
container_volume 17
creator Wu, Xin
Hong, Danfeng
Chanussot, Jocelyn
Xu, Yang
Tao, Ran
Wang, Yue
description Geospatial object detection (GOD) of remote sensing imagery has been attracting increasing interest in recent years, due to the rapid development in spaceborne imaging. Most of the previously proposed object detectors are very sensitive to object deformations, such as scaling and rotation. To this end, we propose a novel and efficient framework for GOD in this letter, called Fourier-based rotation-invariant feature boosting (FRIFB). A Fourier-based rotation-invariant feature is first generated in polar coordinate. Then, the extracted features can be further structurally refined using aggregate channel features. This leads to a faster feature computation and more robust feature representation, which is good fitting for the coming boosting learning. Finally, in the test phase, we achieve a fast pyramid feature extraction by estimating a scale factor instead of directly collecting all features from the image pyramid. Extensive experiments are conducted on two subsets of NWPU VHR-10 data set, demonstrating the superiority and effectiveness of the FRIFB compared to the previous state-of-the-art methods.
doi_str_mv 10.1109/LGRS.2019.2919755
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8737724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8737724</ieee_id><sourcerecordid>2345513983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-2dd43d0edf2bf74261a771e654e2b9877dcc86af37065bc578a135bf607266e3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRUKs_QLwEPHnYms9N1lut_YKCoD14C9ndiabWTU3Siv_eXSqeZph55mV4suyK4CEhuLxbzp5fhhSTckhLUkohjrIzIoTKsZDkuO-5yEWpXk-z8xjXGFOulDzL3NTvgoOQP5gIDXr2ySTn23zR7k1wpk1oCibtAqAH72Ny7ds9GrVoYq2rHfTrYD7h24cPZH1AM_Bx2yWYDXqq1lAn9AipK13kRXZizSbC5V8dZKvpZDWe58un2WI8WuY1K1nKadNw1mBoLK2s5LQgRkoCheBAq1JJ2dS1KoxlEheiqoVUhjBR2QJLWhTABtntIfbdbPQ2uE8TfrQ3Ts9HS93PMGVYck73tGNvDuw2-K8dxKTXnY22-05TxoUgrFSso8iBqoOPMYD9jyVY9_J1L1_38vWf_O7m-nDjAOCfV5JJSTn7BaicgBU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2345513983</pqid></control><display><type>article</type><title>Fourier-Based Rotation-Invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Xin ; Hong, Danfeng ; Chanussot, Jocelyn ; Xu, Yang ; Tao, Ran ; Wang, Yue</creator><creatorcontrib>Wu, Xin ; Hong, Danfeng ; Chanussot, Jocelyn ; Xu, Yang ; Tao, Ran ; Wang, Yue</creatorcontrib><description>Geospatial object detection (GOD) of remote sensing imagery has been attracting increasing interest in recent years, due to the rapid development in spaceborne imaging. Most of the previously proposed object detectors are very sensitive to object deformations, such as scaling and rotation. To this end, we propose a novel and efficient framework for GOD in this letter, called Fourier-based rotation-invariant feature boosting (FRIFB). A Fourier-based rotation-invariant feature is first generated in polar coordinate. Then, the extracted features can be further structurally refined using aggregate channel features. This leads to a faster feature computation and more robust feature representation, which is good fitting for the coming boosting learning. Finally, in the test phase, we achieve a fast pyramid feature extraction by estimating a scale factor instead of directly collecting all features from the image pyramid. Extensive experiments are conducted on two subsets of NWPU VHR-10 data set, demonstrating the superiority and effectiveness of the FRIFB compared to the previous state-of-the-art methods.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2019.2919755</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aggregate channel features (ACFs) ; Boosting ; Computation ; Detection ; Detectors ; Engineering Sciences ; Feature extraction ; Fourier transformation ; Frequency modulation ; Geospatial analysis ; geospatial object detection (GOD) ; Image detection ; Imagery ; Imaging techniques ; Invariants ; Object detection ; Object recognition ; Polar coordinates ; Remote sensing ; Rotation ; rotation-invariant ; Scaling ; Signal and Image processing ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2020-02, Vol.17 (2), p.302-306</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-2dd43d0edf2bf74261a771e654e2b9877dcc86af37065bc578a135bf607266e3</citedby><cites>FETCH-LOGICAL-c393t-2dd43d0edf2bf74261a771e654e2b9877dcc86af37065bc578a135bf607266e3</cites><orcidid>0000-0002-5243-7189 ; 0000-0002-1733-3560 ; 0000-0002-3212-9584 ; 0000-0003-4817-2875 ; 0000-0002-5499-3728 ; 0000-0001-6230-3275 ; 0000-0003-3514-9705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8737724$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8737724$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02307442$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Hong, Danfeng</creatorcontrib><creatorcontrib>Chanussot, Jocelyn</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><title>Fourier-Based Rotation-Invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Geospatial object detection (GOD) of remote sensing imagery has been attracting increasing interest in recent years, due to the rapid development in spaceborne imaging. Most of the previously proposed object detectors are very sensitive to object deformations, such as scaling and rotation. To this end, we propose a novel and efficient framework for GOD in this letter, called Fourier-based rotation-invariant feature boosting (FRIFB). A Fourier-based rotation-invariant feature is first generated in polar coordinate. Then, the extracted features can be further structurally refined using aggregate channel features. This leads to a faster feature computation and more robust feature representation, which is good fitting for the coming boosting learning. Finally, in the test phase, we achieve a fast pyramid feature extraction by estimating a scale factor instead of directly collecting all features from the image pyramid. Extensive experiments are conducted on two subsets of NWPU VHR-10 data set, demonstrating the superiority and effectiveness of the FRIFB compared to the previous state-of-the-art methods.</description><subject>Aggregate channel features (ACFs)</subject><subject>Boosting</subject><subject>Computation</subject><subject>Detection</subject><subject>Detectors</subject><subject>Engineering Sciences</subject><subject>Feature extraction</subject><subject>Fourier transformation</subject><subject>Frequency modulation</subject><subject>Geospatial analysis</subject><subject>geospatial object detection (GOD)</subject><subject>Image detection</subject><subject>Imagery</subject><subject>Imaging techniques</subject><subject>Invariants</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Polar coordinates</subject><subject>Remote sensing</subject><subject>Rotation</subject><subject>rotation-invariant</subject><subject>Scaling</subject><subject>Signal and Image processing</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhhdRUKs_QLwEPHnYms9N1lut_YKCoD14C9ndiabWTU3Siv_eXSqeZph55mV4suyK4CEhuLxbzp5fhhSTckhLUkohjrIzIoTKsZDkuO-5yEWpXk-z8xjXGFOulDzL3NTvgoOQP5gIDXr2ySTn23zR7k1wpk1oCibtAqAH72Ny7ds9GrVoYq2rHfTrYD7h24cPZH1AM_Bx2yWYDXqq1lAn9AipK13kRXZizSbC5V8dZKvpZDWe58un2WI8WuY1K1nKadNw1mBoLK2s5LQgRkoCheBAq1JJ2dS1KoxlEheiqoVUhjBR2QJLWhTABtntIfbdbPQ2uE8TfrQ3Ts9HS93PMGVYck73tGNvDuw2-K8dxKTXnY22-05TxoUgrFSso8iBqoOPMYD9jyVY9_J1L1_38vWf_O7m-nDjAOCfV5JJSTn7BaicgBU</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Wu, Xin</creator><creator>Hong, Danfeng</creator><creator>Chanussot, Jocelyn</creator><creator>Xu, Yang</creator><creator>Tao, Ran</creator><creator>Wang, Yue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE - Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5243-7189</orcidid><orcidid>https://orcid.org/0000-0002-1733-3560</orcidid><orcidid>https://orcid.org/0000-0002-3212-9584</orcidid><orcidid>https://orcid.org/0000-0003-4817-2875</orcidid><orcidid>https://orcid.org/0000-0002-5499-3728</orcidid><orcidid>https://orcid.org/0000-0001-6230-3275</orcidid><orcidid>https://orcid.org/0000-0003-3514-9705</orcidid></search><sort><creationdate>20200201</creationdate><title>Fourier-Based Rotation-Invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection</title><author>Wu, Xin ; Hong, Danfeng ; Chanussot, Jocelyn ; Xu, Yang ; Tao, Ran ; Wang, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-2dd43d0edf2bf74261a771e654e2b9877dcc86af37065bc578a135bf607266e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregate channel features (ACFs)</topic><topic>Boosting</topic><topic>Computation</topic><topic>Detection</topic><topic>Detectors</topic><topic>Engineering Sciences</topic><topic>Feature extraction</topic><topic>Fourier transformation</topic><topic>Frequency modulation</topic><topic>Geospatial analysis</topic><topic>geospatial object detection (GOD)</topic><topic>Image detection</topic><topic>Imagery</topic><topic>Imaging techniques</topic><topic>Invariants</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Polar coordinates</topic><topic>Remote sensing</topic><topic>Rotation</topic><topic>rotation-invariant</topic><topic>Scaling</topic><topic>Signal and Image processing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Hong, Danfeng</creatorcontrib><creatorcontrib>Chanussot, Jocelyn</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Xin</au><au>Hong, Danfeng</au><au>Chanussot, Jocelyn</au><au>Xu, Yang</au><au>Tao, Ran</au><au>Wang, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourier-Based Rotation-Invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>17</volume><issue>2</issue><spage>302</spage><epage>306</epage><pages>302-306</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Geospatial object detection (GOD) of remote sensing imagery has been attracting increasing interest in recent years, due to the rapid development in spaceborne imaging. Most of the previously proposed object detectors are very sensitive to object deformations, such as scaling and rotation. To this end, we propose a novel and efficient framework for GOD in this letter, called Fourier-based rotation-invariant feature boosting (FRIFB). A Fourier-based rotation-invariant feature is first generated in polar coordinate. Then, the extracted features can be further structurally refined using aggregate channel features. This leads to a faster feature computation and more robust feature representation, which is good fitting for the coming boosting learning. Finally, in the test phase, we achieve a fast pyramid feature extraction by estimating a scale factor instead of directly collecting all features from the image pyramid. Extensive experiments are conducted on two subsets of NWPU VHR-10 data set, demonstrating the superiority and effectiveness of the FRIFB compared to the previous state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2019.2919755</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5243-7189</orcidid><orcidid>https://orcid.org/0000-0002-1733-3560</orcidid><orcidid>https://orcid.org/0000-0002-3212-9584</orcidid><orcidid>https://orcid.org/0000-0003-4817-2875</orcidid><orcidid>https://orcid.org/0000-0002-5499-3728</orcidid><orcidid>https://orcid.org/0000-0001-6230-3275</orcidid><orcidid>https://orcid.org/0000-0003-3514-9705</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2020-02, Vol.17 (2), p.302-306
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_8737724
source IEEE Electronic Library (IEL)
subjects Aggregate channel features (ACFs)
Boosting
Computation
Detection
Detectors
Engineering Sciences
Feature extraction
Fourier transformation
Frequency modulation
Geospatial analysis
geospatial object detection (GOD)
Image detection
Imagery
Imaging techniques
Invariants
Object detection
Object recognition
Polar coordinates
Remote sensing
Rotation
rotation-invariant
Scaling
Signal and Image processing
Training
title Fourier-Based Rotation-Invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourier-Based%20Rotation-Invariant%20Feature%20Boosting:%20An%20Efficient%20Framework%20for%20Geospatial%20Object%20Detection&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Wu,%20Xin&rft.date=2020-02-01&rft.volume=17&rft.issue=2&rft.spage=302&rft.epage=306&rft.pages=302-306&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2019.2919755&rft_dat=%3Cproquest_RIE%3E2345513983%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2345513983&rft_id=info:pmid/&rft_ieee_id=8737724&rfr_iscdi=true