A Dual Half-Bridge LLC Resonant Converter With Magnetic Control for Battery Charger Application
In this paper, a dual half-bridge LLC resonant converter with magnetic control is proposed for the battery charger application. The primary switches are shared by two LLC resonant networks, and their outputs are connected in series. One of the LLC resonant converters is designed to operate at the se...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2020-02, Vol.35 (2), p.2196-2207 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2207 |
---|---|
container_issue | 2 |
container_start_page | 2196 |
container_title | IEEE transactions on power electronics |
container_volume | 35 |
creator | Wei, Yuqi Luo, Quanming Du, Xiong Altin, Necmi Nasiri, Adel Alonso, J. Marcos |
description | In this paper, a dual half-bridge LLC resonant converter with magnetic control is proposed for the battery charger application. The primary switches are shared by two LLC resonant networks, and their outputs are connected in series. One of the LLC resonant converters is designed to operate at the series resonant frequency, which is also the highest efficiency operating point, and the constant output voltage characteristic is achieved at this operating point. The second LLC resonant converter adopts magnetic control to regulate the total output current and voltage during both constant current charge mode and constant voltage charge mode. Meanwhile, the function decoupling idea is adopted to further improve the system efficiency. The significant amount of the power is handled by the LLC resonant converter operating at the series resonant frequency, whereas the second LLC resonant converter fulfills the responsibility to achieve closed-loop control. By carefully designing the resonant networks, the zero-voltage switching for primary switches and zero-current switching for secondary diodes can be achieved for whole operation range. A 320-W experimental prototype is built to verify the theoretical analysis, and the maximum efficiency is measured about 95.5%. |
doi_str_mv | 10.1109/TPEL.2019.2922991 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8736788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8736788</ieee_id><sourcerecordid>2316566830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-263031ea4550568698ba13cdda88d3ab87579cee7f1e742bc395e150f022b1213</originalsourceid><addsrcrecordid>eNqNkMFO3DAQhi3USmyXPkDFxVKPVZYZe53YxyXQUimoCFH1aDneyWIU4q3jLeLtm-2icuU0o9H3zWh-xj4hLBDBnN3dXDYLAWgWwghhDB6xGZolFoBQvWMz0FoV2hh5zD6M4wMALhXgjNkVv9i5nl-5vivOU1hviDdNzW9pjIMbMq_j8IdSpsR_hXzPr91moBz8fp5T7HkXEz93eQKeeX3v0mYiV9ttH7zLIQ4n7H3n-pE-vtQ5-_n18q6-Kpof377Xq6bwwshciFKCRHJLpUCVujS6dSj9eu20XkvX6kpVxhNVHVK1FK2XRhEq6ECIFgXKOft82LtN8feOxmwf4i4N00krJJaqLPV0Yc7wQPkUxzFRZ7cpPLr0bBHsPke7z9Huc7QvOU6OPjhP1MZu9IEGT_89AFACtNRm6rSqQ_73dh13Q57UL29XJ_r0QAeiV0pXsqy0ln8BsPqN7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316566830</pqid></control><display><type>article</type><title>A Dual Half-Bridge LLC Resonant Converter With Magnetic Control for Battery Charger Application</title><source>IEEE Electronic Library (IEL)</source><creator>Wei, Yuqi ; Luo, Quanming ; Du, Xiong ; Altin, Necmi ; Nasiri, Adel ; Alonso, J. Marcos</creator><creatorcontrib>Wei, Yuqi ; Luo, Quanming ; Du, Xiong ; Altin, Necmi ; Nasiri, Adel ; Alonso, J. Marcos</creatorcontrib><description>In this paper, a dual half-bridge LLC resonant converter with magnetic control is proposed for the battery charger application. The primary switches are shared by two LLC resonant networks, and their outputs are connected in series. One of the LLC resonant converters is designed to operate at the series resonant frequency, which is also the highest efficiency operating point, and the constant output voltage characteristic is achieved at this operating point. The second LLC resonant converter adopts magnetic control to regulate the total output current and voltage during both constant current charge mode and constant voltage charge mode. Meanwhile, the function decoupling idea is adopted to further improve the system efficiency. The significant amount of the power is handled by the LLC resonant converter operating at the series resonant frequency, whereas the second LLC resonant converter fulfills the responsibility to achieve closed-loop control. By carefully designing the resonant networks, the zero-voltage switching for primary switches and zero-current switching for secondary diodes can be achieved for whole operation range. A 320-W experimental prototype is built to verify the theoretical analysis, and the maximum efficiency is measured about 95.5%.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2019.2922991</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Batteries ; Battery charger ; Battery chargers ; Capacitors ; Converters ; Decoupling ; Diodes ; Efficiency ; Electric bridges ; Electric potential ; Energy conversion efficiency ; Engineering ; Engineering, Electrical & Electronic ; Frequency modulation ; Inductors ; LLC resonant converter ; Magnetic control ; Magnetic resonance ; Power efficiency ; Resonant converters ; Resonant frequencies ; Science & Technology ; soft switching ; Switches ; Switching theory ; Technology ; Topology ; Voltage</subject><ispartof>IEEE transactions on power electronics, 2020-02, Vol.35 (2), p.2196-2207</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>92</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000520838900085</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c293t-263031ea4550568698ba13cdda88d3ab87579cee7f1e742bc395e150f022b1213</citedby><cites>FETCH-LOGICAL-c293t-263031ea4550568698ba13cdda88d3ab87579cee7f1e742bc395e150f022b1213</cites><orcidid>0000-0002-8090-0898 ; 0000-0003-3294-9782 ; 0000-0002-1458-2801 ; 0000-0003-0986-799X ; 0000-0002-0212-1653 ; 0000-0003-0964-6484</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8736788$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,28257,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8736788$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei, Yuqi</creatorcontrib><creatorcontrib>Luo, Quanming</creatorcontrib><creatorcontrib>Du, Xiong</creatorcontrib><creatorcontrib>Altin, Necmi</creatorcontrib><creatorcontrib>Nasiri, Adel</creatorcontrib><creatorcontrib>Alonso, J. Marcos</creatorcontrib><title>A Dual Half-Bridge LLC Resonant Converter With Magnetic Control for Battery Charger Application</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><addtitle>IEEE T POWER ELECTR</addtitle><description>In this paper, a dual half-bridge LLC resonant converter with magnetic control is proposed for the battery charger application. The primary switches are shared by two LLC resonant networks, and their outputs are connected in series. One of the LLC resonant converters is designed to operate at the series resonant frequency, which is also the highest efficiency operating point, and the constant output voltage characteristic is achieved at this operating point. The second LLC resonant converter adopts magnetic control to regulate the total output current and voltage during both constant current charge mode and constant voltage charge mode. Meanwhile, the function decoupling idea is adopted to further improve the system efficiency. The significant amount of the power is handled by the LLC resonant converter operating at the series resonant frequency, whereas the second LLC resonant converter fulfills the responsibility to achieve closed-loop control. By carefully designing the resonant networks, the zero-voltage switching for primary switches and zero-current switching for secondary diodes can be achieved for whole operation range. A 320-W experimental prototype is built to verify the theoretical analysis, and the maximum efficiency is measured about 95.5%.</description><subject>Batteries</subject><subject>Battery charger</subject><subject>Battery chargers</subject><subject>Capacitors</subject><subject>Converters</subject><subject>Decoupling</subject><subject>Diodes</subject><subject>Efficiency</subject><subject>Electric bridges</subject><subject>Electric potential</subject><subject>Energy conversion efficiency</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Frequency modulation</subject><subject>Inductors</subject><subject>LLC resonant converter</subject><subject>Magnetic control</subject><subject>Magnetic resonance</subject><subject>Power efficiency</subject><subject>Resonant converters</subject><subject>Resonant frequencies</subject><subject>Science & Technology</subject><subject>soft switching</subject><subject>Switches</subject><subject>Switching theory</subject><subject>Technology</subject><subject>Topology</subject><subject>Voltage</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkMFO3DAQhi3USmyXPkDFxVKPVZYZe53YxyXQUimoCFH1aDneyWIU4q3jLeLtm-2icuU0o9H3zWh-xj4hLBDBnN3dXDYLAWgWwghhDB6xGZolFoBQvWMz0FoV2hh5zD6M4wMALhXgjNkVv9i5nl-5vivOU1hviDdNzW9pjIMbMq_j8IdSpsR_hXzPr91moBz8fp5T7HkXEz93eQKeeX3v0mYiV9ttH7zLIQ4n7H3n-pE-vtQ5-_n18q6-Kpof377Xq6bwwshciFKCRHJLpUCVujS6dSj9eu20XkvX6kpVxhNVHVK1FK2XRhEq6ECIFgXKOft82LtN8feOxmwf4i4N00krJJaqLPV0Yc7wQPkUxzFRZ7cpPLr0bBHsPke7z9Huc7QvOU6OPjhP1MZu9IEGT_89AFACtNRm6rSqQ_73dh13Q57UL29XJ_r0QAeiV0pXsqy0ln8BsPqN7A</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Wei, Yuqi</creator><creator>Luo, Quanming</creator><creator>Du, Xiong</creator><creator>Altin, Necmi</creator><creator>Nasiri, Adel</creator><creator>Alonso, J. Marcos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8090-0898</orcidid><orcidid>https://orcid.org/0000-0003-3294-9782</orcidid><orcidid>https://orcid.org/0000-0002-1458-2801</orcidid><orcidid>https://orcid.org/0000-0003-0986-799X</orcidid><orcidid>https://orcid.org/0000-0002-0212-1653</orcidid><orcidid>https://orcid.org/0000-0003-0964-6484</orcidid></search><sort><creationdate>20200201</creationdate><title>A Dual Half-Bridge LLC Resonant Converter With Magnetic Control for Battery Charger Application</title><author>Wei, Yuqi ; Luo, Quanming ; Du, Xiong ; Altin, Necmi ; Nasiri, Adel ; Alonso, J. Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-263031ea4550568698ba13cdda88d3ab87579cee7f1e742bc395e150f022b1213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Batteries</topic><topic>Battery charger</topic><topic>Battery chargers</topic><topic>Capacitors</topic><topic>Converters</topic><topic>Decoupling</topic><topic>Diodes</topic><topic>Efficiency</topic><topic>Electric bridges</topic><topic>Electric potential</topic><topic>Energy conversion efficiency</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Frequency modulation</topic><topic>Inductors</topic><topic>LLC resonant converter</topic><topic>Magnetic control</topic><topic>Magnetic resonance</topic><topic>Power efficiency</topic><topic>Resonant converters</topic><topic>Resonant frequencies</topic><topic>Science & Technology</topic><topic>soft switching</topic><topic>Switches</topic><topic>Switching theory</topic><topic>Technology</topic><topic>Topology</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Yuqi</creatorcontrib><creatorcontrib>Luo, Quanming</creatorcontrib><creatorcontrib>Du, Xiong</creatorcontrib><creatorcontrib>Altin, Necmi</creatorcontrib><creatorcontrib>Nasiri, Adel</creatorcontrib><creatorcontrib>Alonso, J. Marcos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei, Yuqi</au><au>Luo, Quanming</au><au>Du, Xiong</au><au>Altin, Necmi</au><au>Nasiri, Adel</au><au>Alonso, J. Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Dual Half-Bridge LLC Resonant Converter With Magnetic Control for Battery Charger Application</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><stitle>IEEE T POWER ELECTR</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>35</volume><issue>2</issue><spage>2196</spage><epage>2207</epage><pages>2196-2207</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>In this paper, a dual half-bridge LLC resonant converter with magnetic control is proposed for the battery charger application. The primary switches are shared by two LLC resonant networks, and their outputs are connected in series. One of the LLC resonant converters is designed to operate at the series resonant frequency, which is also the highest efficiency operating point, and the constant output voltage characteristic is achieved at this operating point. The second LLC resonant converter adopts magnetic control to regulate the total output current and voltage during both constant current charge mode and constant voltage charge mode. Meanwhile, the function decoupling idea is adopted to further improve the system efficiency. The significant amount of the power is handled by the LLC resonant converter operating at the series resonant frequency, whereas the second LLC resonant converter fulfills the responsibility to achieve closed-loop control. By carefully designing the resonant networks, the zero-voltage switching for primary switches and zero-current switching for secondary diodes can be achieved for whole operation range. A 320-W experimental prototype is built to verify the theoretical analysis, and the maximum efficiency is measured about 95.5%.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TPEL.2019.2922991</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8090-0898</orcidid><orcidid>https://orcid.org/0000-0003-3294-9782</orcidid><orcidid>https://orcid.org/0000-0002-1458-2801</orcidid><orcidid>https://orcid.org/0000-0003-0986-799X</orcidid><orcidid>https://orcid.org/0000-0002-0212-1653</orcidid><orcidid>https://orcid.org/0000-0003-0964-6484</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2020-02, Vol.35 (2), p.2196-2207 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_8736788 |
source | IEEE Electronic Library (IEL) |
subjects | Batteries Battery charger Battery chargers Capacitors Converters Decoupling Diodes Efficiency Electric bridges Electric potential Energy conversion efficiency Engineering Engineering, Electrical & Electronic Frequency modulation Inductors LLC resonant converter Magnetic control Magnetic resonance Power efficiency Resonant converters Resonant frequencies Science & Technology soft switching Switches Switching theory Technology Topology Voltage |
title | A Dual Half-Bridge LLC Resonant Converter With Magnetic Control for Battery Charger Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T02%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Dual%20Half-Bridge%20LLC%20Resonant%20Converter%20With%20Magnetic%20Control%20for%20Battery%20Charger%20Application&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Wei,%20Yuqi&rft.date=2020-02-01&rft.volume=35&rft.issue=2&rft.spage=2196&rft.epage=2207&rft.pages=2196-2207&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2019.2922991&rft_dat=%3Cproquest_RIE%3E2316566830%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316566830&rft_id=info:pmid/&rft_ieee_id=8736788&rfr_iscdi=true |