A Dual Half-Bridge LLC Resonant Converter With Magnetic Control for Battery Charger Application

In this paper, a dual half-bridge LLC resonant converter with magnetic control is proposed for the battery charger application. The primary switches are shared by two LLC resonant networks, and their outputs are connected in series. One of the LLC resonant converters is designed to operate at the se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2020-02, Vol.35 (2), p.2196-2207
Hauptverfasser: Wei, Yuqi, Luo, Quanming, Du, Xiong, Altin, Necmi, Nasiri, Adel, Alonso, J. Marcos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2207
container_issue 2
container_start_page 2196
container_title IEEE transactions on power electronics
container_volume 35
creator Wei, Yuqi
Luo, Quanming
Du, Xiong
Altin, Necmi
Nasiri, Adel
Alonso, J. Marcos
description In this paper, a dual half-bridge LLC resonant converter with magnetic control is proposed for the battery charger application. The primary switches are shared by two LLC resonant networks, and their outputs are connected in series. One of the LLC resonant converters is designed to operate at the series resonant frequency, which is also the highest efficiency operating point, and the constant output voltage characteristic is achieved at this operating point. The second LLC resonant converter adopts magnetic control to regulate the total output current and voltage during both constant current charge mode and constant voltage charge mode. Meanwhile, the function decoupling idea is adopted to further improve the system efficiency. The significant amount of the power is handled by the LLC resonant converter operating at the series resonant frequency, whereas the second LLC resonant converter fulfills the responsibility to achieve closed-loop control. By carefully designing the resonant networks, the zero-voltage switching for primary switches and zero-current switching for secondary diodes can be achieved for whole operation range. A 320-W experimental prototype is built to verify the theoretical analysis, and the maximum efficiency is measured about 95.5%.
doi_str_mv 10.1109/TPEL.2019.2922991
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8736788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8736788</ieee_id><sourcerecordid>2316566830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-263031ea4550568698ba13cdda88d3ab87579cee7f1e742bc395e150f022b1213</originalsourceid><addsrcrecordid>eNqNkMFO3DAQhi3USmyXPkDFxVKPVZYZe53YxyXQUimoCFH1aDneyWIU4q3jLeLtm-2icuU0o9H3zWh-xj4hLBDBnN3dXDYLAWgWwghhDB6xGZolFoBQvWMz0FoV2hh5zD6M4wMALhXgjNkVv9i5nl-5vivOU1hviDdNzW9pjIMbMq_j8IdSpsR_hXzPr91moBz8fp5T7HkXEz93eQKeeX3v0mYiV9ttH7zLIQ4n7H3n-pE-vtQ5-_n18q6-Kpof377Xq6bwwshciFKCRHJLpUCVujS6dSj9eu20XkvX6kpVxhNVHVK1FK2XRhEq6ECIFgXKOft82LtN8feOxmwf4i4N00krJJaqLPV0Yc7wQPkUxzFRZ7cpPLr0bBHsPke7z9Huc7QvOU6OPjhP1MZu9IEGT_89AFACtNRm6rSqQ_73dh13Q57UL29XJ_r0QAeiV0pXsqy0ln8BsPqN7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316566830</pqid></control><display><type>article</type><title>A Dual Half-Bridge LLC Resonant Converter With Magnetic Control for Battery Charger Application</title><source>IEEE Electronic Library (IEL)</source><creator>Wei, Yuqi ; Luo, Quanming ; Du, Xiong ; Altin, Necmi ; Nasiri, Adel ; Alonso, J. Marcos</creator><creatorcontrib>Wei, Yuqi ; Luo, Quanming ; Du, Xiong ; Altin, Necmi ; Nasiri, Adel ; Alonso, J. Marcos</creatorcontrib><description>In this paper, a dual half-bridge LLC resonant converter with magnetic control is proposed for the battery charger application. The primary switches are shared by two LLC resonant networks, and their outputs are connected in series. One of the LLC resonant converters is designed to operate at the series resonant frequency, which is also the highest efficiency operating point, and the constant output voltage characteristic is achieved at this operating point. The second LLC resonant converter adopts magnetic control to regulate the total output current and voltage during both constant current charge mode and constant voltage charge mode. Meanwhile, the function decoupling idea is adopted to further improve the system efficiency. The significant amount of the power is handled by the LLC resonant converter operating at the series resonant frequency, whereas the second LLC resonant converter fulfills the responsibility to achieve closed-loop control. By carefully designing the resonant networks, the zero-voltage switching for primary switches and zero-current switching for secondary diodes can be achieved for whole operation range. A 320-W experimental prototype is built to verify the theoretical analysis, and the maximum efficiency is measured about 95.5%.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2019.2922991</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Batteries ; Battery charger ; Battery chargers ; Capacitors ; Converters ; Decoupling ; Diodes ; Efficiency ; Electric bridges ; Electric potential ; Energy conversion efficiency ; Engineering ; Engineering, Electrical &amp; Electronic ; Frequency modulation ; Inductors ; LLC resonant converter ; Magnetic control ; Magnetic resonance ; Power efficiency ; Resonant converters ; Resonant frequencies ; Science &amp; Technology ; soft switching ; Switches ; Switching theory ; Technology ; Topology ; Voltage</subject><ispartof>IEEE transactions on power electronics, 2020-02, Vol.35 (2), p.2196-2207</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>92</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000520838900085</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c293t-263031ea4550568698ba13cdda88d3ab87579cee7f1e742bc395e150f022b1213</citedby><cites>FETCH-LOGICAL-c293t-263031ea4550568698ba13cdda88d3ab87579cee7f1e742bc395e150f022b1213</cites><orcidid>0000-0002-8090-0898 ; 0000-0003-3294-9782 ; 0000-0002-1458-2801 ; 0000-0003-0986-799X ; 0000-0002-0212-1653 ; 0000-0003-0964-6484</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8736788$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,28257,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8736788$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei, Yuqi</creatorcontrib><creatorcontrib>Luo, Quanming</creatorcontrib><creatorcontrib>Du, Xiong</creatorcontrib><creatorcontrib>Altin, Necmi</creatorcontrib><creatorcontrib>Nasiri, Adel</creatorcontrib><creatorcontrib>Alonso, J. Marcos</creatorcontrib><title>A Dual Half-Bridge LLC Resonant Converter With Magnetic Control for Battery Charger Application</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><addtitle>IEEE T POWER ELECTR</addtitle><description>In this paper, a dual half-bridge LLC resonant converter with magnetic control is proposed for the battery charger application. The primary switches are shared by two LLC resonant networks, and their outputs are connected in series. One of the LLC resonant converters is designed to operate at the series resonant frequency, which is also the highest efficiency operating point, and the constant output voltage characteristic is achieved at this operating point. The second LLC resonant converter adopts magnetic control to regulate the total output current and voltage during both constant current charge mode and constant voltage charge mode. Meanwhile, the function decoupling idea is adopted to further improve the system efficiency. The significant amount of the power is handled by the LLC resonant converter operating at the series resonant frequency, whereas the second LLC resonant converter fulfills the responsibility to achieve closed-loop control. By carefully designing the resonant networks, the zero-voltage switching for primary switches and zero-current switching for secondary diodes can be achieved for whole operation range. A 320-W experimental prototype is built to verify the theoretical analysis, and the maximum efficiency is measured about 95.5%.</description><subject>Batteries</subject><subject>Battery charger</subject><subject>Battery chargers</subject><subject>Capacitors</subject><subject>Converters</subject><subject>Decoupling</subject><subject>Diodes</subject><subject>Efficiency</subject><subject>Electric bridges</subject><subject>Electric potential</subject><subject>Energy conversion efficiency</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Frequency modulation</subject><subject>Inductors</subject><subject>LLC resonant converter</subject><subject>Magnetic control</subject><subject>Magnetic resonance</subject><subject>Power efficiency</subject><subject>Resonant converters</subject><subject>Resonant frequencies</subject><subject>Science &amp; Technology</subject><subject>soft switching</subject><subject>Switches</subject><subject>Switching theory</subject><subject>Technology</subject><subject>Topology</subject><subject>Voltage</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkMFO3DAQhi3USmyXPkDFxVKPVZYZe53YxyXQUimoCFH1aDneyWIU4q3jLeLtm-2icuU0o9H3zWh-xj4hLBDBnN3dXDYLAWgWwghhDB6xGZolFoBQvWMz0FoV2hh5zD6M4wMALhXgjNkVv9i5nl-5vivOU1hviDdNzW9pjIMbMq_j8IdSpsR_hXzPr91moBz8fp5T7HkXEz93eQKeeX3v0mYiV9ttH7zLIQ4n7H3n-pE-vtQ5-_n18q6-Kpof377Xq6bwwshciFKCRHJLpUCVujS6dSj9eu20XkvX6kpVxhNVHVK1FK2XRhEq6ECIFgXKOft82LtN8feOxmwf4i4N00krJJaqLPV0Yc7wQPkUxzFRZ7cpPLr0bBHsPke7z9Huc7QvOU6OPjhP1MZu9IEGT_89AFACtNRm6rSqQ_73dh13Q57UL29XJ_r0QAeiV0pXsqy0ln8BsPqN7A</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Wei, Yuqi</creator><creator>Luo, Quanming</creator><creator>Du, Xiong</creator><creator>Altin, Necmi</creator><creator>Nasiri, Adel</creator><creator>Alonso, J. Marcos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8090-0898</orcidid><orcidid>https://orcid.org/0000-0003-3294-9782</orcidid><orcidid>https://orcid.org/0000-0002-1458-2801</orcidid><orcidid>https://orcid.org/0000-0003-0986-799X</orcidid><orcidid>https://orcid.org/0000-0002-0212-1653</orcidid><orcidid>https://orcid.org/0000-0003-0964-6484</orcidid></search><sort><creationdate>20200201</creationdate><title>A Dual Half-Bridge LLC Resonant Converter With Magnetic Control for Battery Charger Application</title><author>Wei, Yuqi ; Luo, Quanming ; Du, Xiong ; Altin, Necmi ; Nasiri, Adel ; Alonso, J. Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-263031ea4550568698ba13cdda88d3ab87579cee7f1e742bc395e150f022b1213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Batteries</topic><topic>Battery charger</topic><topic>Battery chargers</topic><topic>Capacitors</topic><topic>Converters</topic><topic>Decoupling</topic><topic>Diodes</topic><topic>Efficiency</topic><topic>Electric bridges</topic><topic>Electric potential</topic><topic>Energy conversion efficiency</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Frequency modulation</topic><topic>Inductors</topic><topic>LLC resonant converter</topic><topic>Magnetic control</topic><topic>Magnetic resonance</topic><topic>Power efficiency</topic><topic>Resonant converters</topic><topic>Resonant frequencies</topic><topic>Science &amp; Technology</topic><topic>soft switching</topic><topic>Switches</topic><topic>Switching theory</topic><topic>Technology</topic><topic>Topology</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Yuqi</creatorcontrib><creatorcontrib>Luo, Quanming</creatorcontrib><creatorcontrib>Du, Xiong</creatorcontrib><creatorcontrib>Altin, Necmi</creatorcontrib><creatorcontrib>Nasiri, Adel</creatorcontrib><creatorcontrib>Alonso, J. Marcos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei, Yuqi</au><au>Luo, Quanming</au><au>Du, Xiong</au><au>Altin, Necmi</au><au>Nasiri, Adel</au><au>Alonso, J. Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Dual Half-Bridge LLC Resonant Converter With Magnetic Control for Battery Charger Application</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><stitle>IEEE T POWER ELECTR</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>35</volume><issue>2</issue><spage>2196</spage><epage>2207</epage><pages>2196-2207</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>In this paper, a dual half-bridge LLC resonant converter with magnetic control is proposed for the battery charger application. The primary switches are shared by two LLC resonant networks, and their outputs are connected in series. One of the LLC resonant converters is designed to operate at the series resonant frequency, which is also the highest efficiency operating point, and the constant output voltage characteristic is achieved at this operating point. The second LLC resonant converter adopts magnetic control to regulate the total output current and voltage during both constant current charge mode and constant voltage charge mode. Meanwhile, the function decoupling idea is adopted to further improve the system efficiency. The significant amount of the power is handled by the LLC resonant converter operating at the series resonant frequency, whereas the second LLC resonant converter fulfills the responsibility to achieve closed-loop control. By carefully designing the resonant networks, the zero-voltage switching for primary switches and zero-current switching for secondary diodes can be achieved for whole operation range. A 320-W experimental prototype is built to verify the theoretical analysis, and the maximum efficiency is measured about 95.5%.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TPEL.2019.2922991</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8090-0898</orcidid><orcidid>https://orcid.org/0000-0003-3294-9782</orcidid><orcidid>https://orcid.org/0000-0002-1458-2801</orcidid><orcidid>https://orcid.org/0000-0003-0986-799X</orcidid><orcidid>https://orcid.org/0000-0002-0212-1653</orcidid><orcidid>https://orcid.org/0000-0003-0964-6484</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2020-02, Vol.35 (2), p.2196-2207
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_8736788
source IEEE Electronic Library (IEL)
subjects Batteries
Battery charger
Battery chargers
Capacitors
Converters
Decoupling
Diodes
Efficiency
Electric bridges
Electric potential
Energy conversion efficiency
Engineering
Engineering, Electrical & Electronic
Frequency modulation
Inductors
LLC resonant converter
Magnetic control
Magnetic resonance
Power efficiency
Resonant converters
Resonant frequencies
Science & Technology
soft switching
Switches
Switching theory
Technology
Topology
Voltage
title A Dual Half-Bridge LLC Resonant Converter With Magnetic Control for Battery Charger Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T02%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Dual%20Half-Bridge%20LLC%20Resonant%20Converter%20With%20Magnetic%20Control%20for%20Battery%20Charger%20Application&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Wei,%20Yuqi&rft.date=2020-02-01&rft.volume=35&rft.issue=2&rft.spage=2196&rft.epage=2207&rft.pages=2196-2207&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2019.2922991&rft_dat=%3Cproquest_RIE%3E2316566830%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316566830&rft_id=info:pmid/&rft_ieee_id=8736788&rfr_iscdi=true