A Quad-Channel 11-bit 1-GS/s 40-mW Collaborative ADC Enabling Digital Beamforming for 5G Wireless
A 4 \times 11 bit 1-GS/s 40-mW collaborative analog-to-digital converter (ADC) is presented in a 65-nm CMOS for a four-channel multiple-input and multiple-output (MIMO) receiver. This work extends the maximal-ratio-combining (MRC) approach to define the ADC resolution in a multichannel environment...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2019-09, Vol.67 (9), p.3798-3820 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3820 |
---|---|
container_issue | 9 |
container_start_page | 3798 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 67 |
creator | Aurangozeb Aryanfar, Farshid Hossain, Masum |
description | A 4 \times 11 bit 1-GS/s 40-mW collaborative analog-to-digital converter (ADC) is presented in a 65-nm CMOS for a four-channel multiple-input and multiple-output (MIMO) receiver. This work extends the maximal-ratio-combining (MRC) approach to define the ADC resolution in a multichannel environment to maximize the signal-to-noise ratio (SNR) in a power-constrained application. The ADC takes the advantage of the channel diversity by distributing the resolution according to the channel SNR. In addition, it utilizes the correlated information between channels to perform energy-efficient digitization of received signals. The collaborative ADC is designed with eight successive-approximation-register (SAR) ADC units each having a 6-bit of resolution and a 2-bit flash to monitor SNR. With the help of a coarse 2-bit flash, the ADC can detect change in channel SNR and accordingly reconfigure the four ADCs with a variable resolution from 6 to 11 bits with less than 1-ns mode switching time. This collaborative ADC performance is compared with four channel ADCs with uniform 11 and 9 bits of resolution. It reduces area and power by half and 41%, respectively, with only 10% degradation of overall signal-to-noise and distortion ratio (SNDR). |
doi_str_mv | 10.1109/TMTT.2019.2916788 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8734009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8734009</ieee_id><sourcerecordid>2285327863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-f080fe6b4a592f5c5671ff4082225df98465fc30fe41d0690447c877a5bd51f93</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeJ3tJE2a5HJ2cwoTESu7LGmbzI5-zKQT_Pe2TLx6OYfnPQcehG4pzCgFPU9f0nTGgOoZ0zSWSp2hCRVCEh1LOEcTAKqI5gou0VUI-2HkAtQEmQV-O5qSJJ-mbW2NKSV51WNK1u_zgDmQZouTrq5N3nnTV98WL5YJXrUmr6t2h5fVrupNjR-saVznm3E3JBZrvK28rW0I1-jCmTrYm7-coo_HVZo8kc3r-jlZbEjBWNQTBwqcjXNuhGZOFCKW1DkOijEmSqcVj4UrooHhtIRYA-eyUFIakZeCOh1N0f3p7sF3X0cb-mzfHX07vMwYUyJiUsXRQNETVfguBG9ddvBVY_xPRiEbTWajyWw0mf2ZHDp3p05lrf3nlYw4gI5-AWSOa8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285327863</pqid></control><display><type>article</type><title>A Quad-Channel 11-bit 1-GS/s 40-mW Collaborative ADC Enabling Digital Beamforming for 5G Wireless</title><source>IEEE Electronic Library (IEL)</source><creator>Aurangozeb ; Aryanfar, Farshid ; Hossain, Masum</creator><creatorcontrib>Aurangozeb ; Aryanfar, Farshid ; Hossain, Masum</creatorcontrib><description>A <inline-formula> <tex-math notation="LaTeX">4 \times 11 </tex-math></inline-formula> bit 1-GS/s 40-mW collaborative analog-to-digital converter (ADC) is presented in a 65-nm CMOS for a four-channel multiple-input and multiple-output (MIMO) receiver. This work extends the maximal-ratio-combining (MRC) approach to define the ADC resolution in a multichannel environment to maximize the signal-to-noise ratio (SNR) in a power-constrained application. The ADC takes the advantage of the channel diversity by distributing the resolution according to the channel SNR. In addition, it utilizes the correlated information between channels to perform energy-efficient digitization of received signals. The collaborative ADC is designed with eight successive-approximation-register (SAR) ADC units each having a 6-bit of resolution and a 2-bit flash to monitor SNR. With the help of a coarse 2-bit flash, the ADC can detect change in channel SNR and accordingly reconfigure the four ADCs with a variable resolution from 6 to 11 bits with less than 1-ns mode switching time. This collaborative ADC performance is compared with four channel ADCs with uniform 11 and 9 bits of resolution. It reduces area and power by half and 41%, respectively, with only 10% degradation of overall signal-to-noise and distortion ratio (SNDR).</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2019.2916788</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G wireless ; Analog to digital conversion ; Analog to digital converters ; Antenna arrays ; Aperture antennas ; Array signal processing ; Beamforming ; Change detection ; CMOS ; Collaboration ; collaborative analog-to-digital converter (ADC) ; digital beamforming (DBF) ; Digitization ; Multichannel communication ; multiple-input and multiple-output (MIMO) ; Receiving antennas ; reconfigurable ADC ; Signal resolution ; Signal to noise ratio ; successive-approximation-register (SAR) ADC</subject><ispartof>IEEE transactions on microwave theory and techniques, 2019-09, Vol.67 (9), p.3798-3820</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-f080fe6b4a592f5c5671ff4082225df98465fc30fe41d0690447c877a5bd51f93</citedby><cites>FETCH-LOGICAL-c223t-f080fe6b4a592f5c5671ff4082225df98465fc30fe41d0690447c877a5bd51f93</cites><orcidid>0000-0002-6159-9067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8734009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8734009$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aurangozeb</creatorcontrib><creatorcontrib>Aryanfar, Farshid</creatorcontrib><creatorcontrib>Hossain, Masum</creatorcontrib><title>A Quad-Channel 11-bit 1-GS/s 40-mW Collaborative ADC Enabling Digital Beamforming for 5G Wireless</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>A <inline-formula> <tex-math notation="LaTeX">4 \times 11 </tex-math></inline-formula> bit 1-GS/s 40-mW collaborative analog-to-digital converter (ADC) is presented in a 65-nm CMOS for a four-channel multiple-input and multiple-output (MIMO) receiver. This work extends the maximal-ratio-combining (MRC) approach to define the ADC resolution in a multichannel environment to maximize the signal-to-noise ratio (SNR) in a power-constrained application. The ADC takes the advantage of the channel diversity by distributing the resolution according to the channel SNR. In addition, it utilizes the correlated information between channels to perform energy-efficient digitization of received signals. The collaborative ADC is designed with eight successive-approximation-register (SAR) ADC units each having a 6-bit of resolution and a 2-bit flash to monitor SNR. With the help of a coarse 2-bit flash, the ADC can detect change in channel SNR and accordingly reconfigure the four ADCs with a variable resolution from 6 to 11 bits with less than 1-ns mode switching time. This collaborative ADC performance is compared with four channel ADCs with uniform 11 and 9 bits of resolution. It reduces area and power by half and 41%, respectively, with only 10% degradation of overall signal-to-noise and distortion ratio (SNDR).</description><subject>5G wireless</subject><subject>Analog to digital conversion</subject><subject>Analog to digital converters</subject><subject>Antenna arrays</subject><subject>Aperture antennas</subject><subject>Array signal processing</subject><subject>Beamforming</subject><subject>Change detection</subject><subject>CMOS</subject><subject>Collaboration</subject><subject>collaborative analog-to-digital converter (ADC)</subject><subject>digital beamforming (DBF)</subject><subject>Digitization</subject><subject>Multichannel communication</subject><subject>multiple-input and multiple-output (MIMO)</subject><subject>Receiving antennas</subject><subject>reconfigurable ADC</subject><subject>Signal resolution</subject><subject>Signal to noise ratio</subject><subject>successive-approximation-register (SAR) ADC</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeJ3tJE2a5HJ2cwoTESu7LGmbzI5-zKQT_Pe2TLx6OYfnPQcehG4pzCgFPU9f0nTGgOoZ0zSWSp2hCRVCEh1LOEcTAKqI5gou0VUI-2HkAtQEmQV-O5qSJJ-mbW2NKSV51WNK1u_zgDmQZouTrq5N3nnTV98WL5YJXrUmr6t2h5fVrupNjR-saVznm3E3JBZrvK28rW0I1-jCmTrYm7-coo_HVZo8kc3r-jlZbEjBWNQTBwqcjXNuhGZOFCKW1DkOijEmSqcVj4UrooHhtIRYA-eyUFIakZeCOh1N0f3p7sF3X0cb-mzfHX07vMwYUyJiUsXRQNETVfguBG9ddvBVY_xPRiEbTWajyWw0mf2ZHDp3p05lrf3nlYw4gI5-AWSOa8w</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Aurangozeb</creator><creator>Aryanfar, Farshid</creator><creator>Hossain, Masum</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6159-9067</orcidid></search><sort><creationdate>20190901</creationdate><title>A Quad-Channel 11-bit 1-GS/s 40-mW Collaborative ADC Enabling Digital Beamforming for 5G Wireless</title><author>Aurangozeb ; Aryanfar, Farshid ; Hossain, Masum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-f080fe6b4a592f5c5671ff4082225df98465fc30fe41d0690447c877a5bd51f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>5G wireless</topic><topic>Analog to digital conversion</topic><topic>Analog to digital converters</topic><topic>Antenna arrays</topic><topic>Aperture antennas</topic><topic>Array signal processing</topic><topic>Beamforming</topic><topic>Change detection</topic><topic>CMOS</topic><topic>Collaboration</topic><topic>collaborative analog-to-digital converter (ADC)</topic><topic>digital beamforming (DBF)</topic><topic>Digitization</topic><topic>Multichannel communication</topic><topic>multiple-input and multiple-output (MIMO)</topic><topic>Receiving antennas</topic><topic>reconfigurable ADC</topic><topic>Signal resolution</topic><topic>Signal to noise ratio</topic><topic>successive-approximation-register (SAR) ADC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aurangozeb</creatorcontrib><creatorcontrib>Aryanfar, Farshid</creatorcontrib><creatorcontrib>Hossain, Masum</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aurangozeb</au><au>Aryanfar, Farshid</au><au>Hossain, Masum</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Quad-Channel 11-bit 1-GS/s 40-mW Collaborative ADC Enabling Digital Beamforming for 5G Wireless</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>67</volume><issue>9</issue><spage>3798</spage><epage>3820</epage><pages>3798-3820</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>A <inline-formula> <tex-math notation="LaTeX">4 \times 11 </tex-math></inline-formula> bit 1-GS/s 40-mW collaborative analog-to-digital converter (ADC) is presented in a 65-nm CMOS for a four-channel multiple-input and multiple-output (MIMO) receiver. This work extends the maximal-ratio-combining (MRC) approach to define the ADC resolution in a multichannel environment to maximize the signal-to-noise ratio (SNR) in a power-constrained application. The ADC takes the advantage of the channel diversity by distributing the resolution according to the channel SNR. In addition, it utilizes the correlated information between channels to perform energy-efficient digitization of received signals. The collaborative ADC is designed with eight successive-approximation-register (SAR) ADC units each having a 6-bit of resolution and a 2-bit flash to monitor SNR. With the help of a coarse 2-bit flash, the ADC can detect change in channel SNR and accordingly reconfigure the four ADCs with a variable resolution from 6 to 11 bits with less than 1-ns mode switching time. This collaborative ADC performance is compared with four channel ADCs with uniform 11 and 9 bits of resolution. It reduces area and power by half and 41%, respectively, with only 10% degradation of overall signal-to-noise and distortion ratio (SNDR).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2019.2916788</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6159-9067</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2019-09, Vol.67 (9), p.3798-3820 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_ieee_primary_8734009 |
source | IEEE Electronic Library (IEL) |
subjects | 5G wireless Analog to digital conversion Analog to digital converters Antenna arrays Aperture antennas Array signal processing Beamforming Change detection CMOS Collaboration collaborative analog-to-digital converter (ADC) digital beamforming (DBF) Digitization Multichannel communication multiple-input and multiple-output (MIMO) Receiving antennas reconfigurable ADC Signal resolution Signal to noise ratio successive-approximation-register (SAR) ADC |
title | A Quad-Channel 11-bit 1-GS/s 40-mW Collaborative ADC Enabling Digital Beamforming for 5G Wireless |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Quad-Channel%2011-bit%201-GS/s%2040-mW%20Collaborative%20ADC%20Enabling%20Digital%20Beamforming%20for%205G%20Wireless&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Aurangozeb&rft.date=2019-09-01&rft.volume=67&rft.issue=9&rft.spage=3798&rft.epage=3820&rft.pages=3798-3820&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2019.2916788&rft_dat=%3Cproquest_RIE%3E2285327863%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285327863&rft_id=info:pmid/&rft_ieee_id=8734009&rfr_iscdi=true |