Multiview Semi-Supervised Learning Model for Image Classification

Semi-supervised learning models for multiview data are important in image classification tasks, since heterogeneous features are easy to obtain and semi-supervised schemes are economical and effective. To model the view importance, conventional graph-based multiview learning models learn a linear co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2020-12, Vol.32 (12), p.2389-2400
Hauptverfasser: Nie, Feiping, Tian, Lai, Wang, Rong, Li, Xuelong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2400
container_issue 12
container_start_page 2389
container_title IEEE transactions on knowledge and data engineering
container_volume 32
creator Nie, Feiping
Tian, Lai
Wang, Rong
Li, Xuelong
description Semi-supervised learning models for multiview data are important in image classification tasks, since heterogeneous features are easy to obtain and semi-supervised schemes are economical and effective. To model the view importance, conventional graph-based multiview learning models learn a linear combination of views while assuming a priori weights distribution. In this paper, we present a novel structural regularized semi-supervised model for multiview data, termed Adaptive MUltiview SEmi-supervised model (AMUSE). Our new model learns weights from a priori graph structure, which is more reasonable than weight regularization. Theoretical analysis reveals the significant difference between AMUSE and the prior arts. An efficient optimization algorithm is provided to solve the new model. Experimental results on six real-world data sets demonstrate the effectiveness of the structural regularized weights learning scheme.
doi_str_mv 10.1109/TKDE.2019.2920985
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8731740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8731740</ieee_id><sourcerecordid>2460151898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a94c1e2884d180e0e5d2f848195d5a916b8abc711d03a7c7535b24fa6df7ad563</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AOPLEp-HvV27to8EQYkQH8Dnpqx3pGRs2G4Y_70jEJ_uefjOuclHyCPQEQDVL-uP1-mIUdAjphnVSlyRAQihUgYarvtMOaQ84_KW3MW4o5QqqWBAxsuuav3R40-ywr1PV90Bw9FHdMkCbah9vU2WjcMqKZuQzPd2i8mksjH60he29U19T25KW0V8uNwh-ZpN15P3dPH5Np-MF2nBdNamVvMCkCnFHSiKFIVjpeIKtHDCasg3ym4KCeBoZmUhRSY2jJc2d6W0TuTZkDyfdw-h-e4wtmbXdKHuXxrGcwoClFY9BWeqCE2MAUtzCH5vw68Bak6mzMmUOZkyF1N95-nc8Yj4zyuZgeQ0-wPx2GPj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460151898</pqid></control><display><type>article</type><title>Multiview Semi-Supervised Learning Model for Image Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Nie, Feiping ; Tian, Lai ; Wang, Rong ; Li, Xuelong</creator><creatorcontrib>Nie, Feiping ; Tian, Lai ; Wang, Rong ; Li, Xuelong</creatorcontrib><description>Semi-supervised learning models for multiview data are important in image classification tasks, since heterogeneous features are easy to obtain and semi-supervised schemes are economical and effective. To model the view importance, conventional graph-based multiview learning models learn a linear combination of views while assuming a priori weights distribution. In this paper, we present a novel structural regularized semi-supervised model for multiview data, termed Adaptive MUltiview SEmi-supervised model (AMUSE). Our new model learns weights from a priori graph structure, which is more reasonable than weight regularization. Theoretical analysis reveals the significant difference between AMUSE and the prior arts. An efficient optimization algorithm is provided to solve the new model. Experimental results on six real-world data sets demonstrate the effectiveness of the structural regularized weights learning scheme.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2019.2920985</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Algorithms ; Computational modeling ; Data models ; Economic models ; Feature extraction ; graph-based learning ; Image classification ; Laplace equations ; Multiview learning ; Optimization ; Regularization ; Semi-supervised learning ; Semisupervised learning ; structured graph</subject><ispartof>IEEE transactions on knowledge and data engineering, 2020-12, Vol.32 (12), p.2389-2400</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a94c1e2884d180e0e5d2f848195d5a916b8abc711d03a7c7535b24fa6df7ad563</citedby><cites>FETCH-LOGICAL-c293t-a94c1e2884d180e0e5d2f848195d5a916b8abc711d03a7c7535b24fa6df7ad563</cites><orcidid>0000-0001-9240-6726 ; 0000-0002-0328-2651 ; 0000-0002-0871-6519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8731740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8731740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nie, Feiping</creatorcontrib><creatorcontrib>Tian, Lai</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Li, Xuelong</creatorcontrib><title>Multiview Semi-Supervised Learning Model for Image Classification</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Semi-supervised learning models for multiview data are important in image classification tasks, since heterogeneous features are easy to obtain and semi-supervised schemes are economical and effective. To model the view importance, conventional graph-based multiview learning models learn a linear combination of views while assuming a priori weights distribution. In this paper, we present a novel structural regularized semi-supervised model for multiview data, termed Adaptive MUltiview SEmi-supervised model (AMUSE). Our new model learns weights from a priori graph structure, which is more reasonable than weight regularization. Theoretical analysis reveals the significant difference between AMUSE and the prior arts. An efficient optimization algorithm is provided to solve the new model. Experimental results on six real-world data sets demonstrate the effectiveness of the structural regularized weights learning scheme.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Economic models</subject><subject>Feature extraction</subject><subject>graph-based learning</subject><subject>Image classification</subject><subject>Laplace equations</subject><subject>Multiview learning</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Semi-supervised learning</subject><subject>Semisupervised learning</subject><subject>structured graph</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAUhRujiYj-AOPLEp-HvV27to8EQYkQH8Dnpqx3pGRs2G4Y_70jEJ_uefjOuclHyCPQEQDVL-uP1-mIUdAjphnVSlyRAQihUgYarvtMOaQ84_KW3MW4o5QqqWBAxsuuav3R40-ywr1PV90Bw9FHdMkCbah9vU2WjcMqKZuQzPd2i8mksjH60he29U19T25KW0V8uNwh-ZpN15P3dPH5Np-MF2nBdNamVvMCkCnFHSiKFIVjpeIKtHDCasg3ym4KCeBoZmUhRSY2jJc2d6W0TuTZkDyfdw-h-e4wtmbXdKHuXxrGcwoClFY9BWeqCE2MAUtzCH5vw68Bak6mzMmUOZkyF1N95-nc8Yj4zyuZgeQ0-wPx2GPj</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Nie, Feiping</creator><creator>Tian, Lai</creator><creator>Wang, Rong</creator><creator>Li, Xuelong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9240-6726</orcidid><orcidid>https://orcid.org/0000-0002-0328-2651</orcidid><orcidid>https://orcid.org/0000-0002-0871-6519</orcidid></search><sort><creationdate>20201201</creationdate><title>Multiview Semi-Supervised Learning Model for Image Classification</title><author>Nie, Feiping ; Tian, Lai ; Wang, Rong ; Li, Xuelong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a94c1e2884d180e0e5d2f848195d5a916b8abc711d03a7c7535b24fa6df7ad563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Economic models</topic><topic>Feature extraction</topic><topic>graph-based learning</topic><topic>Image classification</topic><topic>Laplace equations</topic><topic>Multiview learning</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Semi-supervised learning</topic><topic>Semisupervised learning</topic><topic>structured graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Feiping</creatorcontrib><creatorcontrib>Tian, Lai</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Li, Xuelong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nie, Feiping</au><au>Tian, Lai</au><au>Wang, Rong</au><au>Li, Xuelong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiview Semi-Supervised Learning Model for Image Classification</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>32</volume><issue>12</issue><spage>2389</spage><epage>2400</epage><pages>2389-2400</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Semi-supervised learning models for multiview data are important in image classification tasks, since heterogeneous features are easy to obtain and semi-supervised schemes are economical and effective. To model the view importance, conventional graph-based multiview learning models learn a linear combination of views while assuming a priori weights distribution. In this paper, we present a novel structural regularized semi-supervised model for multiview data, termed Adaptive MUltiview SEmi-supervised model (AMUSE). Our new model learns weights from a priori graph structure, which is more reasonable than weight regularization. Theoretical analysis reveals the significant difference between AMUSE and the prior arts. An efficient optimization algorithm is provided to solve the new model. Experimental results on six real-world data sets demonstrate the effectiveness of the structural regularized weights learning scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2019.2920985</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9240-6726</orcidid><orcidid>https://orcid.org/0000-0002-0328-2651</orcidid><orcidid>https://orcid.org/0000-0002-0871-6519</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2020-12, Vol.32 (12), p.2389-2400
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_8731740
source IEEE Electronic Library (IEL)
subjects Adaptation models
Algorithms
Computational modeling
Data models
Economic models
Feature extraction
graph-based learning
Image classification
Laplace equations
Multiview learning
Optimization
Regularization
Semi-supervised learning
Semisupervised learning
structured graph
title Multiview Semi-Supervised Learning Model for Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A14%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiview%20Semi-Supervised%20Learning%20Model%20for%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Nie,%20Feiping&rft.date=2020-12-01&rft.volume=32&rft.issue=12&rft.spage=2389&rft.epage=2400&rft.pages=2389-2400&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2019.2920985&rft_dat=%3Cproquest_RIE%3E2460151898%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460151898&rft_id=info:pmid/&rft_ieee_id=8731740&rfr_iscdi=true