Deep Neural Architectures for Highly Imbalanced Data in Bioinformatics
In the postgenome era, many problems in bioinformatics have arisen due to the generation of large amounts of imbalanced data. In particular, the computational classification of precursor microRNA (pre-miRNA) involves a high imbalance in the classes. For this task, a classifier is trained to identify...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2020-08, Vol.31 (8), p.2857-2867 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2867 |
---|---|
container_issue | 8 |
container_start_page | 2857 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 31 |
creator | Bugnon, Leandro A. Yones, Cristian Milone, Diego H. Stegmayer, Georgina |
description | In the postgenome era, many problems in bioinformatics have arisen due to the generation of large amounts of imbalanced data. In particular, the computational classification of precursor microRNA (pre-miRNA) involves a high imbalance in the classes. For this task, a classifier is trained to identify RNA sequences having the highest chance of being miRNA precursors. The big issue is that well-known pre-miRNAs are usually just a few in comparison to the hundreds of thousands of candidate sequences in a genome, which results in highly imbalanced data. This imbalance has a strong influence on most standard classifiers and, if not properly addressed, the classifier is not able to work properly in a real-life scenario. This work provides a comparative assessment of recent deep neural architectures for dealing with the large imbalanced data issue in the classification of pre-miRNAs. We present and analyze recent architectures in a benchmark framework with genomes of animals and plants, with increasing imbalance ratios up to 1:2000. We also propose a new graphical way for comparing classifiers performance in the context of high-class imbalance. The comparative results obtained show that, at a very high imbalance, deep belief neural networks can provide the best performance. |
doi_str_mv | 10.1109/TNNLS.2019.2914471 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8728181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8728181</ieee_id><sourcerecordid>2340052145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-62767e90a8dadba00dead544c5d48a5b5e093b94808a3cda4f2ce1a30897a713</originalsourceid><addsrcrecordid>eNpdkE1PwzAMQCMEAjT4AyChSly4bMRJ2qbHMT6laRzYgVvkph5kateRtIf9ewIbO-CLLfnZsh9jF8BHALy4nc9m07eR4FCMRAFK5XDATgVkYiik1of7On8_YechLHmMjKeZKo7ZiQTIOdfilD3eE62TGfUe62Ts7afryHa9p5AsWp88u4_PepO8NCXWuLJUJffYYeJWyZ1r3SoiDXbOhjN2tMA60PkuD9j88WE-eR5OX59eJuPp0MoUumEm8iyngqOusCqR84qwSpWyaaU0pmVKvJBloTTXKG2FaiEsAUquixxzkAN2s1279u1XT6EzjQuW6ngbtX0wQirOUwEqjej1P3TZ9n4VjzNCyfg-CK0iJbaU9W0InhZm7V2DfmOAmx_P5tez-fFsdp7j0NVudV82VO1H_qxG4HILOCLat3UuNGiQ30cAgAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431701284</pqid></control><display><type>article</type><title>Deep Neural Architectures for Highly Imbalanced Data in Bioinformatics</title><source>IEEE Electronic Library (IEL)</source><creator>Bugnon, Leandro A. ; Yones, Cristian ; Milone, Diego H. ; Stegmayer, Georgina</creator><creatorcontrib>Bugnon, Leandro A. ; Yones, Cristian ; Milone, Diego H. ; Stegmayer, Georgina</creatorcontrib><description>In the postgenome era, many problems in bioinformatics have arisen due to the generation of large amounts of imbalanced data. In particular, the computational classification of precursor microRNA (pre-miRNA) involves a high imbalance in the classes. For this task, a classifier is trained to identify RNA sequences having the highest chance of being miRNA precursors. The big issue is that well-known pre-miRNAs are usually just a few in comparison to the hundreds of thousands of candidate sequences in a genome, which results in highly imbalanced data. This imbalance has a strong influence on most standard classifiers and, if not properly addressed, the classifier is not able to work properly in a real-life scenario. This work provides a comparative assessment of recent deep neural architectures for dealing with the large imbalanced data issue in the classification of pre-miRNAs. We present and analyze recent architectures in a benchmark framework with genomes of animals and plants, with increasing imbalance ratios up to 1:2000. We also propose a new graphical way for comparing classifiers performance in the context of high-class imbalance. The comparative results obtained show that, at a very high imbalance, deep belief neural networks can provide the best performance.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2019.2914471</identifier><identifier>PMID: 31170082</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bioinformatics ; Classification ; Classifiers ; Computer applications ; Computer architecture ; Computer graphics ; deep neural architectures ; Gene sequencing ; Genomes ; Genomics ; high-class imbalance ; MicroRNAs ; miRNA ; Neural networks ; Neural stem cells ; Neurons ; precursor microRNA (pre-miRNA) classification ; Precursors ; Ribonucleic acid ; RNA ; Self-organizing feature maps ; Task analysis ; Training</subject><ispartof>IEEE transaction on neural networks and learning systems, 2020-08, Vol.31 (8), p.2857-2867</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-62767e90a8dadba00dead544c5d48a5b5e093b94808a3cda4f2ce1a30897a713</citedby><cites>FETCH-LOGICAL-c351t-62767e90a8dadba00dead544c5d48a5b5e093b94808a3cda4f2ce1a30897a713</cites><orcidid>0000-0001-5702-946X ; 0000-0002-4157-2350 ; 0000-0003-2182-4351 ; 0000-0003-4459-4560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8728181$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8728181$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31170082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bugnon, Leandro A.</creatorcontrib><creatorcontrib>Yones, Cristian</creatorcontrib><creatorcontrib>Milone, Diego H.</creatorcontrib><creatorcontrib>Stegmayer, Georgina</creatorcontrib><title>Deep Neural Architectures for Highly Imbalanced Data in Bioinformatics</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In the postgenome era, many problems in bioinformatics have arisen due to the generation of large amounts of imbalanced data. In particular, the computational classification of precursor microRNA (pre-miRNA) involves a high imbalance in the classes. For this task, a classifier is trained to identify RNA sequences having the highest chance of being miRNA precursors. The big issue is that well-known pre-miRNAs are usually just a few in comparison to the hundreds of thousands of candidate sequences in a genome, which results in highly imbalanced data. This imbalance has a strong influence on most standard classifiers and, if not properly addressed, the classifier is not able to work properly in a real-life scenario. This work provides a comparative assessment of recent deep neural architectures for dealing with the large imbalanced data issue in the classification of pre-miRNAs. We present and analyze recent architectures in a benchmark framework with genomes of animals and plants, with increasing imbalance ratios up to 1:2000. We also propose a new graphical way for comparing classifiers performance in the context of high-class imbalance. The comparative results obtained show that, at a very high imbalance, deep belief neural networks can provide the best performance.</description><subject>Bioinformatics</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computer applications</subject><subject>Computer architecture</subject><subject>Computer graphics</subject><subject>deep neural architectures</subject><subject>Gene sequencing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>high-class imbalance</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Neural networks</subject><subject>Neural stem cells</subject><subject>Neurons</subject><subject>precursor microRNA (pre-miRNA) classification</subject><subject>Precursors</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Self-organizing feature maps</subject><subject>Task analysis</subject><subject>Training</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwzAMQCMEAjT4AyChSly4bMRJ2qbHMT6laRzYgVvkph5kateRtIf9ewIbO-CLLfnZsh9jF8BHALy4nc9m07eR4FCMRAFK5XDATgVkYiik1of7On8_YechLHmMjKeZKo7ZiQTIOdfilD3eE62TGfUe62Ts7afryHa9p5AsWp88u4_PepO8NCXWuLJUJffYYeJWyZ1r3SoiDXbOhjN2tMA60PkuD9j88WE-eR5OX59eJuPp0MoUumEm8iyngqOusCqR84qwSpWyaaU0pmVKvJBloTTXKG2FaiEsAUquixxzkAN2s1279u1XT6EzjQuW6ngbtX0wQirOUwEqjej1P3TZ9n4VjzNCyfg-CK0iJbaU9W0InhZm7V2DfmOAmx_P5tez-fFsdp7j0NVudV82VO1H_qxG4HILOCLat3UuNGiQ30cAgAM</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Bugnon, Leandro A.</creator><creator>Yones, Cristian</creator><creator>Milone, Diego H.</creator><creator>Stegmayer, Georgina</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5702-946X</orcidid><orcidid>https://orcid.org/0000-0002-4157-2350</orcidid><orcidid>https://orcid.org/0000-0003-2182-4351</orcidid><orcidid>https://orcid.org/0000-0003-4459-4560</orcidid></search><sort><creationdate>20200801</creationdate><title>Deep Neural Architectures for Highly Imbalanced Data in Bioinformatics</title><author>Bugnon, Leandro A. ; Yones, Cristian ; Milone, Diego H. ; Stegmayer, Georgina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-62767e90a8dadba00dead544c5d48a5b5e093b94808a3cda4f2ce1a30897a713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioinformatics</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computer applications</topic><topic>Computer architecture</topic><topic>Computer graphics</topic><topic>deep neural architectures</topic><topic>Gene sequencing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>high-class imbalance</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Neural networks</topic><topic>Neural stem cells</topic><topic>Neurons</topic><topic>precursor microRNA (pre-miRNA) classification</topic><topic>Precursors</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Self-organizing feature maps</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Bugnon, Leandro A.</creatorcontrib><creatorcontrib>Yones, Cristian</creatorcontrib><creatorcontrib>Milone, Diego H.</creatorcontrib><creatorcontrib>Stegmayer, Georgina</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bugnon, Leandro A.</au><au>Yones, Cristian</au><au>Milone, Diego H.</au><au>Stegmayer, Georgina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Neural Architectures for Highly Imbalanced Data in Bioinformatics</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>31</volume><issue>8</issue><spage>2857</spage><epage>2867</epage><pages>2857-2867</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In the postgenome era, many problems in bioinformatics have arisen due to the generation of large amounts of imbalanced data. In particular, the computational classification of precursor microRNA (pre-miRNA) involves a high imbalance in the classes. For this task, a classifier is trained to identify RNA sequences having the highest chance of being miRNA precursors. The big issue is that well-known pre-miRNAs are usually just a few in comparison to the hundreds of thousands of candidate sequences in a genome, which results in highly imbalanced data. This imbalance has a strong influence on most standard classifiers and, if not properly addressed, the classifier is not able to work properly in a real-life scenario. This work provides a comparative assessment of recent deep neural architectures for dealing with the large imbalanced data issue in the classification of pre-miRNAs. We present and analyze recent architectures in a benchmark framework with genomes of animals and plants, with increasing imbalance ratios up to 1:2000. We also propose a new graphical way for comparing classifiers performance in the context of high-class imbalance. The comparative results obtained show that, at a very high imbalance, deep belief neural networks can provide the best performance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31170082</pmid><doi>10.1109/TNNLS.2019.2914471</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5702-946X</orcidid><orcidid>https://orcid.org/0000-0002-4157-2350</orcidid><orcidid>https://orcid.org/0000-0003-2182-4351</orcidid><orcidid>https://orcid.org/0000-0003-4459-4560</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2020-08, Vol.31 (8), p.2857-2867 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_ieee_primary_8728181 |
source | IEEE Electronic Library (IEL) |
subjects | Bioinformatics Classification Classifiers Computer applications Computer architecture Computer graphics deep neural architectures Gene sequencing Genomes Genomics high-class imbalance MicroRNAs miRNA Neural networks Neural stem cells Neurons precursor microRNA (pre-miRNA) classification Precursors Ribonucleic acid RNA Self-organizing feature maps Task analysis Training |
title | Deep Neural Architectures for Highly Imbalanced Data in Bioinformatics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Neural%20Architectures%20for%20Highly%20Imbalanced%20Data%20in%20Bioinformatics&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Bugnon,%20Leandro%20A.&rft.date=2020-08-01&rft.volume=31&rft.issue=8&rft.spage=2857&rft.epage=2867&rft.pages=2857-2867&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2019.2914471&rft_dat=%3Cproquest_RIE%3E2340052145%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431701284&rft_id=info:pmid/31170082&rft_ieee_id=8728181&rfr_iscdi=true |