Quality-Driven Kernel Projection to Latent Structure Model for Nonlinear Process Monitoring
A novel quality-driven kernel projection to latent structure (QKPLS) modeling scheme is proposed for concurrent quality-related and process-fault detection for nonlinear processes. Process data are initially mapped into a high-dimensional feature space by nonlinear mapping. The mapped data in the fe...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.74450-74458 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74458 |
---|---|
container_issue | |
container_start_page | 74450 |
container_title | IEEE access |
container_volume | 7 |
creator | Jiang, Qingchao Yan, Xuefeng |
description | A novel quality-driven kernel projection to latent structure (QKPLS) modeling scheme is proposed for concurrent quality-related and process-fault detection for nonlinear processes. Process data are initially mapped into a high-dimensional feature space by nonlinear mapping. The mapped data in the feature space are then projected by kernel representation into a process-dominant subspace that captures the main process variance and a process-residual subspace orthogonal to the process-dominant subspace. On the basis of the relationship with quality variables, the process-dominant subspace is further decomposed into two orthogonal subspaces, namely, a quality-related subspace that maximizes the covariance between the subspace and the quality variables and a quality-residual subspace orthogonal to the quality-related subspace. Afterward, three orthogonal subspaces are obtained, and monitoring statistics are established to achieve concurrent quality-related and process-fault detection. The application examples on a numerical example and Tennessee Eastman process verify the effectiveness of the QKPLS-based monitoring scheme. |
doi_str_mv | 10.1109/ACCESS.2019.2920395 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8727979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8727979</ieee_id><doaj_id>oai_doaj_org_article_6fa6d45e05a6401599c8f0a7c4fc2d0b</doaj_id><sourcerecordid>2455612971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f651d5bad3a3016f5132a5de7bbdaa5eb9ce61a3cad1f5d62a60a45a69264c9d3</originalsourceid><addsrcrecordid>eNpNkc1qGzEUhYfQQIKTJ8hmoOtx9TPSWMvgum2I0yY4XXUh7khXQWYquRpNIW9fOWNCtZE4Ot-5F05V3VCypJSoT7fr9Wa3WzJC1ZIpRrgSZ9Ulo1I1XHD54b_3RXU9jntSzqpIorusfj1NMPj82nxO_i-G-h5TwKF-THGPJvsY6hzrLWQMud7lNJk8Jawfoi0mF1P9PYbBB4R0RAyOY_kLPsfkw8tVde5gGPH6dC-qn182z-tvzfbH17v17bYxLVnlxklBrejBcuCESicoZyAsdn1vAQT2yqCkwA1Y6oSVDCSBVoBUTLZGWb6o7uZcG2GvD8n_hvSqI3j9JsT0oiFlbwbU0oG0rUBS8JZQoZRZOQKdaZ1hlvQl6-OcdUjxz4Rj1vs4pVDW16wVQlKmOlpcfHaZFMcxoXufSok-lqLnUvSxFH0qpVA3M-UR8Z1YdaxTneL_AJ0biYo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455612971</pqid></control><display><type>article</type><title>Quality-Driven Kernel Projection to Latent Structure Model for Nonlinear Process Monitoring</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jiang, Qingchao ; Yan, Xuefeng</creator><creatorcontrib>Jiang, Qingchao ; Yan, Xuefeng</creatorcontrib><description>A novel quality-driven kernel projection to latent structure (QKPLS) modeling scheme is proposed for concurrent quality-related and process-fault detection for nonlinear processes. Process data are initially mapped into a high-dimensional feature space by nonlinear mapping. The mapped data in the feature space are then projected by kernel representation into a process-dominant subspace that captures the main process variance and a process-residual subspace orthogonal to the process-dominant subspace. On the basis of the relationship with quality variables, the process-dominant subspace is further decomposed into two orthogonal subspaces, namely, a quality-related subspace that maximizes the covariance between the subspace and the quality variables and a quality-residual subspace orthogonal to the quality-related subspace. Afterward, three orthogonal subspaces are obtained, and monitoring statistics are established to achieve concurrent quality-related and process-fault detection. The application examples on a numerical example and Tennessee Eastman process verify the effectiveness of the QKPLS-based monitoring scheme.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2920395</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Correlation ; Covariance ; Eigenvalues and eigenfunctions ; Fault detection ; Kernel ; Kernels ; Latent class analysis ; Monitoring ; nonlinear processes ; Optimization ; Principal component analysis ; process monitoring ; quality-driven kernel projection to latent structure ; Quality-related fault detection ; Subspaces</subject><ispartof>IEEE access, 2019, Vol.7, p.74450-74458</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f651d5bad3a3016f5132a5de7bbdaa5eb9ce61a3cad1f5d62a60a45a69264c9d3</citedby><cites>FETCH-LOGICAL-c408t-f651d5bad3a3016f5132a5de7bbdaa5eb9ce61a3cad1f5d62a60a45a69264c9d3</cites><orcidid>0000-0001-5622-8686 ; 0000-0002-3402-9018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8727979$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Jiang, Qingchao</creatorcontrib><creatorcontrib>Yan, Xuefeng</creatorcontrib><title>Quality-Driven Kernel Projection to Latent Structure Model for Nonlinear Process Monitoring</title><title>IEEE access</title><addtitle>Access</addtitle><description>A novel quality-driven kernel projection to latent structure (QKPLS) modeling scheme is proposed for concurrent quality-related and process-fault detection for nonlinear processes. Process data are initially mapped into a high-dimensional feature space by nonlinear mapping. The mapped data in the feature space are then projected by kernel representation into a process-dominant subspace that captures the main process variance and a process-residual subspace orthogonal to the process-dominant subspace. On the basis of the relationship with quality variables, the process-dominant subspace is further decomposed into two orthogonal subspaces, namely, a quality-related subspace that maximizes the covariance between the subspace and the quality variables and a quality-residual subspace orthogonal to the quality-related subspace. Afterward, three orthogonal subspaces are obtained, and monitoring statistics are established to achieve concurrent quality-related and process-fault detection. The application examples on a numerical example and Tennessee Eastman process verify the effectiveness of the QKPLS-based monitoring scheme.</description><subject>Correlation</subject><subject>Covariance</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Fault detection</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Latent class analysis</subject><subject>Monitoring</subject><subject>nonlinear processes</subject><subject>Optimization</subject><subject>Principal component analysis</subject><subject>process monitoring</subject><subject>quality-driven kernel projection to latent structure</subject><subject>Quality-related fault detection</subject><subject>Subspaces</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1qGzEUhYfQQIKTJ8hmoOtx9TPSWMvgum2I0yY4XXUh7khXQWYquRpNIW9fOWNCtZE4Ot-5F05V3VCypJSoT7fr9Wa3WzJC1ZIpRrgSZ9Ulo1I1XHD54b_3RXU9jntSzqpIorusfj1NMPj82nxO_i-G-h5TwKF-THGPJvsY6hzrLWQMud7lNJk8Jawfoi0mF1P9PYbBB4R0RAyOY_kLPsfkw8tVde5gGPH6dC-qn182z-tvzfbH17v17bYxLVnlxklBrejBcuCESicoZyAsdn1vAQT2yqCkwA1Y6oSVDCSBVoBUTLZGWb6o7uZcG2GvD8n_hvSqI3j9JsT0oiFlbwbU0oG0rUBS8JZQoZRZOQKdaZ1hlvQl6-OcdUjxz4Rj1vs4pVDW16wVQlKmOlpcfHaZFMcxoXufSok-lqLnUvSxFH0qpVA3M-UR8Z1YdaxTneL_AJ0biYo</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Jiang, Qingchao</creator><creator>Yan, Xuefeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5622-8686</orcidid><orcidid>https://orcid.org/0000-0002-3402-9018</orcidid></search><sort><creationdate>2019</creationdate><title>Quality-Driven Kernel Projection to Latent Structure Model for Nonlinear Process Monitoring</title><author>Jiang, Qingchao ; Yan, Xuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f651d5bad3a3016f5132a5de7bbdaa5eb9ce61a3cad1f5d62a60a45a69264c9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Correlation</topic><topic>Covariance</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Fault detection</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Latent class analysis</topic><topic>Monitoring</topic><topic>nonlinear processes</topic><topic>Optimization</topic><topic>Principal component analysis</topic><topic>process monitoring</topic><topic>quality-driven kernel projection to latent structure</topic><topic>Quality-related fault detection</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Qingchao</creatorcontrib><creatorcontrib>Yan, Xuefeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Qingchao</au><au>Yan, Xuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quality-Driven Kernel Projection to Latent Structure Model for Nonlinear Process Monitoring</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>74450</spage><epage>74458</epage><pages>74450-74458</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A novel quality-driven kernel projection to latent structure (QKPLS) modeling scheme is proposed for concurrent quality-related and process-fault detection for nonlinear processes. Process data are initially mapped into a high-dimensional feature space by nonlinear mapping. The mapped data in the feature space are then projected by kernel representation into a process-dominant subspace that captures the main process variance and a process-residual subspace orthogonal to the process-dominant subspace. On the basis of the relationship with quality variables, the process-dominant subspace is further decomposed into two orthogonal subspaces, namely, a quality-related subspace that maximizes the covariance between the subspace and the quality variables and a quality-residual subspace orthogonal to the quality-related subspace. Afterward, three orthogonal subspaces are obtained, and monitoring statistics are established to achieve concurrent quality-related and process-fault detection. The application examples on a numerical example and Tennessee Eastman process verify the effectiveness of the QKPLS-based monitoring scheme.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2920395</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5622-8686</orcidid><orcidid>https://orcid.org/0000-0002-3402-9018</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.74450-74458 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8727979 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Correlation Covariance Eigenvalues and eigenfunctions Fault detection Kernel Kernels Latent class analysis Monitoring nonlinear processes Optimization Principal component analysis process monitoring quality-driven kernel projection to latent structure Quality-related fault detection Subspaces |
title | Quality-Driven Kernel Projection to Latent Structure Model for Nonlinear Process Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A02%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quality-Driven%20Kernel%20Projection%20to%20Latent%20Structure%20Model%20for%20Nonlinear%20Process%20Monitoring&rft.jtitle=IEEE%20access&rft.au=Jiang,%20Qingchao&rft.date=2019&rft.volume=7&rft.spage=74450&rft.epage=74458&rft.pages=74450-74458&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2920395&rft_dat=%3Cproquest_ieee_%3E2455612971%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455612971&rft_id=info:pmid/&rft_ieee_id=8727979&rft_doaj_id=oai_doaj_org_article_6fa6d45e05a6401599c8f0a7c4fc2d0b&rfr_iscdi=true |