Definition and Evaluation of Model-Free Coordination of Electrical Vehicle Charging With Reinforcement Learning
Demand response (DR) becomes critical to manage the charging load of a growing electric vehicle (EV) deployment. Initial DR studies mainly adopt model predictive control, but models are largely uncertain for the EV scenario (e.g., customer behavior). Model-free approaches, based on reinforcement lea...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2020-01, Vol.11 (1), p.203-214 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 214 |
---|---|
container_issue | 1 |
container_start_page | 203 |
container_title | IEEE transactions on smart grid |
container_volume | 11 |
creator | Sadeghianpourhamami, Nasrin Deleu, Johannes Develder, Chris |
description | Demand response (DR) becomes critical to manage the charging load of a growing electric vehicle (EV) deployment. Initial DR studies mainly adopt model predictive control, but models are largely uncertain for the EV scenario (e.g., customer behavior). Model-free approaches, based on reinforcement learning (RL), are an attractive alternative. We propose a new Markov decision process (MDP) formulation in the RL framework, to jointly coordinate a set of charging stations. State-of-the-art algorithms either focus on a single EV, or control an aggregate of EVs in multiple steps (e.g., 1) make aggregate load decisions and 2) translate the aggregate decision to individual EVs). In contrast, our RL approach jointly controls the whole set of EVs at once. We contribute a new MDP formulation with a scalable state representation independent of the number of charging stations. Using a batch RL algorithm, fitted Q-iteration, we learn an optimal charging policy. With simulations using real-world data, we: 1) differentiate settings in training the RL policy (e.g., the time span covered by training data); 2) compare its performance to an oracle all-knowing benchmark (providing an upper performance bound); 3) analyze performance fluctuations throughout a full year; and 4) demonstrate generalization capacity to larger sets of charging stations. |
doi_str_mv | 10.1109/TSG.2019.2920320 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8727484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8727484</ieee_id><sourcerecordid>2330846055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-48d892c8c7cc0b66676058506e0a2649b5f6db34fac972af47212df2f36bba2b3</originalsourceid><addsrcrecordid>eNo9UEtLAzEQDqJg0d4FLwHPW_Pa7OYota1CRdCqxyWbnbQp26Rmt4L_3tSWzmVm-B4zfAjdUDKilKj7xftsxAhVI6YY4YycoQFVQmWcSHp-mnN-iYZdtyapOOeSqQEKj2Cdd70LHmvf4MmPbnf6fw0Wv4QG2mwaAfA4hNg4f4ImLZg-OqNb_AkrZ9pEWem4dH6Jv1y_wm_gvA3RwAZ8j-ego0_YNbqwuu1geOxX6GM6WYyfsvnr7Hn8MM9M-qzPRNmUipnSFMaQWkpZSJKXOZFANJNC1bmVTc2F1UYVTFtRMMoayyyXda1Zza_Q3cF3G8P3Drq-Wodd9OlkxTgnpUh-eWKRA8vE0HURbLWNbqPjb0VJtU-2SslW-2SrY7JJcnuQOAA40cuCFaIU_A-rcnS1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330846055</pqid></control><display><type>article</type><title>Definition and Evaluation of Model-Free Coordination of Electrical Vehicle Charging With Reinforcement Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Sadeghianpourhamami, Nasrin ; Deleu, Johannes ; Develder, Chris</creator><creatorcontrib>Sadeghianpourhamami, Nasrin ; Deleu, Johannes ; Develder, Chris</creatorcontrib><description>Demand response (DR) becomes critical to manage the charging load of a growing electric vehicle (EV) deployment. Initial DR studies mainly adopt model predictive control, but models are largely uncertain for the EV scenario (e.g., customer behavior). Model-free approaches, based on reinforcement learning (RL), are an attractive alternative. We propose a new Markov decision process (MDP) formulation in the RL framework, to jointly coordinate a set of charging stations. State-of-the-art algorithms either focus on a single EV, or control an aggregate of EVs in multiple steps (e.g., 1) make aggregate load decisions and 2) translate the aggregate decision to individual EVs). In contrast, our RL approach jointly controls the whole set of EVs at once. We contribute a new MDP formulation with a scalable state representation independent of the number of charging stations. Using a batch RL algorithm, fitted Q-iteration, we learn an optimal charging policy. With simulations using real-world data, we: 1) differentiate settings in training the RL policy (e.g., the time span covered by training data); 2) compare its performance to an oracle all-knowing benchmark (providing an upper performance bound); 3) analyze performance fluctuations throughout a full year; and 4) demonstrate generalization capacity to larger sets of charging stations.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2019.2920320</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aggregates ; Algorithms ; batch reinforcement learning ; Charging ; Charging stations ; Computer simulation ; Data models ; Demand response ; Electric vehicle charging ; Electric vehicles ; Electrical loads ; Iterative methods ; Learning ; Load modeling ; Markov processes ; Predictive control ; Reinforcement learning ; Stations ; Training ; Variation</subject><ispartof>IEEE transactions on smart grid, 2020-01, Vol.11 (1), p.203-214</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-48d892c8c7cc0b66676058506e0a2649b5f6db34fac972af47212df2f36bba2b3</citedby><cites>FETCH-LOGICAL-c333t-48d892c8c7cc0b66676058506e0a2649b5f6db34fac972af47212df2f36bba2b3</cites><orcidid>0000-0003-2707-4176 ; 0000-0001-7146-8442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8727484$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8727484$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sadeghianpourhamami, Nasrin</creatorcontrib><creatorcontrib>Deleu, Johannes</creatorcontrib><creatorcontrib>Develder, Chris</creatorcontrib><title>Definition and Evaluation of Model-Free Coordination of Electrical Vehicle Charging With Reinforcement Learning</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Demand response (DR) becomes critical to manage the charging load of a growing electric vehicle (EV) deployment. Initial DR studies mainly adopt model predictive control, but models are largely uncertain for the EV scenario (e.g., customer behavior). Model-free approaches, based on reinforcement learning (RL), are an attractive alternative. We propose a new Markov decision process (MDP) formulation in the RL framework, to jointly coordinate a set of charging stations. State-of-the-art algorithms either focus on a single EV, or control an aggregate of EVs in multiple steps (e.g., 1) make aggregate load decisions and 2) translate the aggregate decision to individual EVs). In contrast, our RL approach jointly controls the whole set of EVs at once. We contribute a new MDP formulation with a scalable state representation independent of the number of charging stations. Using a batch RL algorithm, fitted Q-iteration, we learn an optimal charging policy. With simulations using real-world data, we: 1) differentiate settings in training the RL policy (e.g., the time span covered by training data); 2) compare its performance to an oracle all-knowing benchmark (providing an upper performance bound); 3) analyze performance fluctuations throughout a full year; and 4) demonstrate generalization capacity to larger sets of charging stations.</description><subject>Aggregates</subject><subject>Algorithms</subject><subject>batch reinforcement learning</subject><subject>Charging</subject><subject>Charging stations</subject><subject>Computer simulation</subject><subject>Data models</subject><subject>Demand response</subject><subject>Electric vehicle charging</subject><subject>Electric vehicles</subject><subject>Electrical loads</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Load modeling</subject><subject>Markov processes</subject><subject>Predictive control</subject><subject>Reinforcement learning</subject><subject>Stations</subject><subject>Training</subject><subject>Variation</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UEtLAzEQDqJg0d4FLwHPW_Pa7OYota1CRdCqxyWbnbQp26Rmt4L_3tSWzmVm-B4zfAjdUDKilKj7xftsxAhVI6YY4YycoQFVQmWcSHp-mnN-iYZdtyapOOeSqQEKj2Cdd70LHmvf4MmPbnf6fw0Wv4QG2mwaAfA4hNg4f4ImLZg-OqNb_AkrZ9pEWem4dH6Jv1y_wm_gvA3RwAZ8j-ego0_YNbqwuu1geOxX6GM6WYyfsvnr7Hn8MM9M-qzPRNmUipnSFMaQWkpZSJKXOZFANJNC1bmVTc2F1UYVTFtRMMoayyyXda1Zza_Q3cF3G8P3Drq-Wodd9OlkxTgnpUh-eWKRA8vE0HURbLWNbqPjb0VJtU-2SslW-2SrY7JJcnuQOAA40cuCFaIU_A-rcnS1</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Sadeghianpourhamami, Nasrin</creator><creator>Deleu, Johannes</creator><creator>Develder, Chris</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2707-4176</orcidid><orcidid>https://orcid.org/0000-0001-7146-8442</orcidid></search><sort><creationdate>202001</creationdate><title>Definition and Evaluation of Model-Free Coordination of Electrical Vehicle Charging With Reinforcement Learning</title><author>Sadeghianpourhamami, Nasrin ; Deleu, Johannes ; Develder, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-48d892c8c7cc0b66676058506e0a2649b5f6db34fac972af47212df2f36bba2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregates</topic><topic>Algorithms</topic><topic>batch reinforcement learning</topic><topic>Charging</topic><topic>Charging stations</topic><topic>Computer simulation</topic><topic>Data models</topic><topic>Demand response</topic><topic>Electric vehicle charging</topic><topic>Electric vehicles</topic><topic>Electrical loads</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Load modeling</topic><topic>Markov processes</topic><topic>Predictive control</topic><topic>Reinforcement learning</topic><topic>Stations</topic><topic>Training</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadeghianpourhamami, Nasrin</creatorcontrib><creatorcontrib>Deleu, Johannes</creatorcontrib><creatorcontrib>Develder, Chris</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sadeghianpourhamami, Nasrin</au><au>Deleu, Johannes</au><au>Develder, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Definition and Evaluation of Model-Free Coordination of Electrical Vehicle Charging With Reinforcement Learning</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2020-01</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>203</spage><epage>214</epage><pages>203-214</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Demand response (DR) becomes critical to manage the charging load of a growing electric vehicle (EV) deployment. Initial DR studies mainly adopt model predictive control, but models are largely uncertain for the EV scenario (e.g., customer behavior). Model-free approaches, based on reinforcement learning (RL), are an attractive alternative. We propose a new Markov decision process (MDP) formulation in the RL framework, to jointly coordinate a set of charging stations. State-of-the-art algorithms either focus on a single EV, or control an aggregate of EVs in multiple steps (e.g., 1) make aggregate load decisions and 2) translate the aggregate decision to individual EVs). In contrast, our RL approach jointly controls the whole set of EVs at once. We contribute a new MDP formulation with a scalable state representation independent of the number of charging stations. Using a batch RL algorithm, fitted Q-iteration, we learn an optimal charging policy. With simulations using real-world data, we: 1) differentiate settings in training the RL policy (e.g., the time span covered by training data); 2) compare its performance to an oracle all-knowing benchmark (providing an upper performance bound); 3) analyze performance fluctuations throughout a full year; and 4) demonstrate generalization capacity to larger sets of charging stations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2019.2920320</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2707-4176</orcidid><orcidid>https://orcid.org/0000-0001-7146-8442</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2020-01, Vol.11 (1), p.203-214 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_ieee_primary_8727484 |
source | IEEE Electronic Library (IEL) |
subjects | Aggregates Algorithms batch reinforcement learning Charging Charging stations Computer simulation Data models Demand response Electric vehicle charging Electric vehicles Electrical loads Iterative methods Learning Load modeling Markov processes Predictive control Reinforcement learning Stations Training Variation |
title | Definition and Evaluation of Model-Free Coordination of Electrical Vehicle Charging With Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Definition%20and%20Evaluation%20of%20Model-Free%20Coordination%20of%20Electrical%20Vehicle%20Charging%20With%20Reinforcement%20Learning&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Sadeghianpourhamami,%20Nasrin&rft.date=2020-01&rft.volume=11&rft.issue=1&rft.spage=203&rft.epage=214&rft.pages=203-214&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2019.2920320&rft_dat=%3Cproquest_RIE%3E2330846055%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330846055&rft_id=info:pmid/&rft_ieee_id=8727484&rfr_iscdi=true |