Definition and Evaluation of Model-Free Coordination of Electrical Vehicle Charging With Reinforcement Learning

Demand response (DR) becomes critical to manage the charging load of a growing electric vehicle (EV) deployment. Initial DR studies mainly adopt model predictive control, but models are largely uncertain for the EV scenario (e.g., customer behavior). Model-free approaches, based on reinforcement lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2020-01, Vol.11 (1), p.203-214
Hauptverfasser: Sadeghianpourhamami, Nasrin, Deleu, Johannes, Develder, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214
container_issue 1
container_start_page 203
container_title IEEE transactions on smart grid
container_volume 11
creator Sadeghianpourhamami, Nasrin
Deleu, Johannes
Develder, Chris
description Demand response (DR) becomes critical to manage the charging load of a growing electric vehicle (EV) deployment. Initial DR studies mainly adopt model predictive control, but models are largely uncertain for the EV scenario (e.g., customer behavior). Model-free approaches, based on reinforcement learning (RL), are an attractive alternative. We propose a new Markov decision process (MDP) formulation in the RL framework, to jointly coordinate a set of charging stations. State-of-the-art algorithms either focus on a single EV, or control an aggregate of EVs in multiple steps (e.g., 1) make aggregate load decisions and 2) translate the aggregate decision to individual EVs). In contrast, our RL approach jointly controls the whole set of EVs at once. We contribute a new MDP formulation with a scalable state representation independent of the number of charging stations. Using a batch RL algorithm, fitted Q-iteration, we learn an optimal charging policy. With simulations using real-world data, we: 1) differentiate settings in training the RL policy (e.g., the time span covered by training data); 2) compare its performance to an oracle all-knowing benchmark (providing an upper performance bound); 3) analyze performance fluctuations throughout a full year; and 4) demonstrate generalization capacity to larger sets of charging stations.
doi_str_mv 10.1109/TSG.2019.2920320
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8727484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8727484</ieee_id><sourcerecordid>2330846055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-48d892c8c7cc0b66676058506e0a2649b5f6db34fac972af47212df2f36bba2b3</originalsourceid><addsrcrecordid>eNo9UEtLAzEQDqJg0d4FLwHPW_Pa7OYota1CRdCqxyWbnbQp26Rmt4L_3tSWzmVm-B4zfAjdUDKilKj7xftsxAhVI6YY4YycoQFVQmWcSHp-mnN-iYZdtyapOOeSqQEKj2Cdd70LHmvf4MmPbnf6fw0Wv4QG2mwaAfA4hNg4f4ImLZg-OqNb_AkrZ9pEWem4dH6Jv1y_wm_gvA3RwAZ8j-ego0_YNbqwuu1geOxX6GM6WYyfsvnr7Hn8MM9M-qzPRNmUipnSFMaQWkpZSJKXOZFANJNC1bmVTc2F1UYVTFtRMMoayyyXda1Zza_Q3cF3G8P3Drq-Wodd9OlkxTgnpUh-eWKRA8vE0HURbLWNbqPjb0VJtU-2SslW-2SrY7JJcnuQOAA40cuCFaIU_A-rcnS1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330846055</pqid></control><display><type>article</type><title>Definition and Evaluation of Model-Free Coordination of Electrical Vehicle Charging With Reinforcement Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Sadeghianpourhamami, Nasrin ; Deleu, Johannes ; Develder, Chris</creator><creatorcontrib>Sadeghianpourhamami, Nasrin ; Deleu, Johannes ; Develder, Chris</creatorcontrib><description>Demand response (DR) becomes critical to manage the charging load of a growing electric vehicle (EV) deployment. Initial DR studies mainly adopt model predictive control, but models are largely uncertain for the EV scenario (e.g., customer behavior). Model-free approaches, based on reinforcement learning (RL), are an attractive alternative. We propose a new Markov decision process (MDP) formulation in the RL framework, to jointly coordinate a set of charging stations. State-of-the-art algorithms either focus on a single EV, or control an aggregate of EVs in multiple steps (e.g., 1) make aggregate load decisions and 2) translate the aggregate decision to individual EVs). In contrast, our RL approach jointly controls the whole set of EVs at once. We contribute a new MDP formulation with a scalable state representation independent of the number of charging stations. Using a batch RL algorithm, fitted Q-iteration, we learn an optimal charging policy. With simulations using real-world data, we: 1) differentiate settings in training the RL policy (e.g., the time span covered by training data); 2) compare its performance to an oracle all-knowing benchmark (providing an upper performance bound); 3) analyze performance fluctuations throughout a full year; and 4) demonstrate generalization capacity to larger sets of charging stations.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2019.2920320</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aggregates ; Algorithms ; batch reinforcement learning ; Charging ; Charging stations ; Computer simulation ; Data models ; Demand response ; Electric vehicle charging ; Electric vehicles ; Electrical loads ; Iterative methods ; Learning ; Load modeling ; Markov processes ; Predictive control ; Reinforcement learning ; Stations ; Training ; Variation</subject><ispartof>IEEE transactions on smart grid, 2020-01, Vol.11 (1), p.203-214</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-48d892c8c7cc0b66676058506e0a2649b5f6db34fac972af47212df2f36bba2b3</citedby><cites>FETCH-LOGICAL-c333t-48d892c8c7cc0b66676058506e0a2649b5f6db34fac972af47212df2f36bba2b3</cites><orcidid>0000-0003-2707-4176 ; 0000-0001-7146-8442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8727484$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8727484$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sadeghianpourhamami, Nasrin</creatorcontrib><creatorcontrib>Deleu, Johannes</creatorcontrib><creatorcontrib>Develder, Chris</creatorcontrib><title>Definition and Evaluation of Model-Free Coordination of Electrical Vehicle Charging With Reinforcement Learning</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Demand response (DR) becomes critical to manage the charging load of a growing electric vehicle (EV) deployment. Initial DR studies mainly adopt model predictive control, but models are largely uncertain for the EV scenario (e.g., customer behavior). Model-free approaches, based on reinforcement learning (RL), are an attractive alternative. We propose a new Markov decision process (MDP) formulation in the RL framework, to jointly coordinate a set of charging stations. State-of-the-art algorithms either focus on a single EV, or control an aggregate of EVs in multiple steps (e.g., 1) make aggregate load decisions and 2) translate the aggregate decision to individual EVs). In contrast, our RL approach jointly controls the whole set of EVs at once. We contribute a new MDP formulation with a scalable state representation independent of the number of charging stations. Using a batch RL algorithm, fitted Q-iteration, we learn an optimal charging policy. With simulations using real-world data, we: 1) differentiate settings in training the RL policy (e.g., the time span covered by training data); 2) compare its performance to an oracle all-knowing benchmark (providing an upper performance bound); 3) analyze performance fluctuations throughout a full year; and 4) demonstrate generalization capacity to larger sets of charging stations.</description><subject>Aggregates</subject><subject>Algorithms</subject><subject>batch reinforcement learning</subject><subject>Charging</subject><subject>Charging stations</subject><subject>Computer simulation</subject><subject>Data models</subject><subject>Demand response</subject><subject>Electric vehicle charging</subject><subject>Electric vehicles</subject><subject>Electrical loads</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Load modeling</subject><subject>Markov processes</subject><subject>Predictive control</subject><subject>Reinforcement learning</subject><subject>Stations</subject><subject>Training</subject><subject>Variation</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UEtLAzEQDqJg0d4FLwHPW_Pa7OYota1CRdCqxyWbnbQp26Rmt4L_3tSWzmVm-B4zfAjdUDKilKj7xftsxAhVI6YY4YycoQFVQmWcSHp-mnN-iYZdtyapOOeSqQEKj2Cdd70LHmvf4MmPbnf6fw0Wv4QG2mwaAfA4hNg4f4ImLZg-OqNb_AkrZ9pEWem4dH6Jv1y_wm_gvA3RwAZ8j-ego0_YNbqwuu1geOxX6GM6WYyfsvnr7Hn8MM9M-qzPRNmUipnSFMaQWkpZSJKXOZFANJNC1bmVTc2F1UYVTFtRMMoayyyXda1Zza_Q3cF3G8P3Drq-Wodd9OlkxTgnpUh-eWKRA8vE0HURbLWNbqPjb0VJtU-2SslW-2SrY7JJcnuQOAA40cuCFaIU_A-rcnS1</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Sadeghianpourhamami, Nasrin</creator><creator>Deleu, Johannes</creator><creator>Develder, Chris</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2707-4176</orcidid><orcidid>https://orcid.org/0000-0001-7146-8442</orcidid></search><sort><creationdate>202001</creationdate><title>Definition and Evaluation of Model-Free Coordination of Electrical Vehicle Charging With Reinforcement Learning</title><author>Sadeghianpourhamami, Nasrin ; Deleu, Johannes ; Develder, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-48d892c8c7cc0b66676058506e0a2649b5f6db34fac972af47212df2f36bba2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregates</topic><topic>Algorithms</topic><topic>batch reinforcement learning</topic><topic>Charging</topic><topic>Charging stations</topic><topic>Computer simulation</topic><topic>Data models</topic><topic>Demand response</topic><topic>Electric vehicle charging</topic><topic>Electric vehicles</topic><topic>Electrical loads</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Load modeling</topic><topic>Markov processes</topic><topic>Predictive control</topic><topic>Reinforcement learning</topic><topic>Stations</topic><topic>Training</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadeghianpourhamami, Nasrin</creatorcontrib><creatorcontrib>Deleu, Johannes</creatorcontrib><creatorcontrib>Develder, Chris</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sadeghianpourhamami, Nasrin</au><au>Deleu, Johannes</au><au>Develder, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Definition and Evaluation of Model-Free Coordination of Electrical Vehicle Charging With Reinforcement Learning</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2020-01</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>203</spage><epage>214</epage><pages>203-214</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Demand response (DR) becomes critical to manage the charging load of a growing electric vehicle (EV) deployment. Initial DR studies mainly adopt model predictive control, but models are largely uncertain for the EV scenario (e.g., customer behavior). Model-free approaches, based on reinforcement learning (RL), are an attractive alternative. We propose a new Markov decision process (MDP) formulation in the RL framework, to jointly coordinate a set of charging stations. State-of-the-art algorithms either focus on a single EV, or control an aggregate of EVs in multiple steps (e.g., 1) make aggregate load decisions and 2) translate the aggregate decision to individual EVs). In contrast, our RL approach jointly controls the whole set of EVs at once. We contribute a new MDP formulation with a scalable state representation independent of the number of charging stations. Using a batch RL algorithm, fitted Q-iteration, we learn an optimal charging policy. With simulations using real-world data, we: 1) differentiate settings in training the RL policy (e.g., the time span covered by training data); 2) compare its performance to an oracle all-knowing benchmark (providing an upper performance bound); 3) analyze performance fluctuations throughout a full year; and 4) demonstrate generalization capacity to larger sets of charging stations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2019.2920320</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2707-4176</orcidid><orcidid>https://orcid.org/0000-0001-7146-8442</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2020-01, Vol.11 (1), p.203-214
issn 1949-3053
1949-3061
language eng
recordid cdi_ieee_primary_8727484
source IEEE Electronic Library (IEL)
subjects Aggregates
Algorithms
batch reinforcement learning
Charging
Charging stations
Computer simulation
Data models
Demand response
Electric vehicle charging
Electric vehicles
Electrical loads
Iterative methods
Learning
Load modeling
Markov processes
Predictive control
Reinforcement learning
Stations
Training
Variation
title Definition and Evaluation of Model-Free Coordination of Electrical Vehicle Charging With Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Definition%20and%20Evaluation%20of%20Model-Free%20Coordination%20of%20Electrical%20Vehicle%20Charging%20With%20Reinforcement%20Learning&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Sadeghianpourhamami,%20Nasrin&rft.date=2020-01&rft.volume=11&rft.issue=1&rft.spage=203&rft.epage=214&rft.pages=203-214&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2019.2920320&rft_dat=%3Cproquest_RIE%3E2330846055%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330846055&rft_id=info:pmid/&rft_ieee_id=8727484&rfr_iscdi=true