Optimizing Node Localization in Wireless Sensor Networks Based on Received Signal Strength Indicator

In order to improve the precision of inside localization and optimize the allocation of node resources in wireless sensor networks (WSNs), an equal-arc trilateral localization algorithm based on received signal strength indicator (RSSI) is proposed from the perspective of increasing measurement prec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.73880-73889
Hauptverfasser: Wang, Wei, Liu, Xuming, Li, Maozhen, Wang, Zhaoba, Wang, Cunhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73889
container_issue
container_start_page 73880
container_title IEEE access
container_volume 7
creator Wang, Wei
Liu, Xuming
Li, Maozhen
Wang, Zhaoba
Wang, Cunhua
description In order to improve the precision of inside localization and optimize the allocation of node resources in wireless sensor networks (WSNs), an equal-arc trilateral localization algorithm based on received signal strength indicator (RSSI) is proposed from the perspective of increasing measurement precision and bettering beacon nodes layout. The algorithm adopts Kalman filter to filter the data collected from the best communication range, thus the disturbance problem of RSSI value can be tackled easily. By analyzing the changeable relationship between the communication distance and the RSSI, an optimal communication distance can be identified to satisfy the application requirements. In this paper, an equal-arc triangular beacon node layout model is established to ensure that the motion tracks of unknown nodes are always situated within an optimal communication distance to improve the measurement precision. The experimental results show that the proposed work increases the average location accuracy of the equal-arc triangulation layout model by 81%, 54%, and 48%, respectively, compared with the traditional square beacon model, the traditional equilateral triangle beacon model, and the improved equilateral triangle beacon model. In comparison with the traditional triangular layout, the equal-arc layout area coverage is increased by 23%.
doi_str_mv 10.1109/ACCESS.2019.2920279
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8727428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8727428</ieee_id><doaj_id>oai_doaj_org_article_56975de9fcd74e41b0800dbfbe2b8b11</doaj_id><sourcerecordid>2455599530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-411d4d7cf7efc0586258911b2419c31fb98e25b91174cb5a35ee147333a3d1b43</originalsourceid><addsrcrecordid>eNpNUV1LHDEUHUoFxfoLfAn0ebf53CSPdrF1YVFwFB9DPu5ssx0n2yS26K9v7Ij0vtzD4ZxzuZyuOyd4SQjWXy7W68u-X1JM9JJqiqnUH7oTSlZ6wQRbffwPH3dnpexxG9UoIU-6cHOo8TG-xGmHrlMAtE3ejvHF1pgmFCf0EDOMUArqYSopo2uof1L-WdBXWyCgJroFD_F3w33cTXZEfc0w7eoPtJlC9Lam_Kk7GuxY4Oxtn3b33y7v1leL7c33zfpiu_Acq7rghAQepB8kDB4LtaJCaUIc5UR7RganFVDhGiW5d8IyAUC4ZIxZFojj7LTbzLkh2b055Pho87NJNpp_RMo7Y3ONfgQjVlqKAHrwQXLgxGGFcXCDA-qUI6RlfZ6zDjn9eoJSzT495fZfMZQLIbQWDDcVm1U-p1IyDO9XCTav7Zi5HfPajnlrp7nOZ1cEgHeHklRyqthfofGLLg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455599530</pqid></control><display><type>article</type><title>Optimizing Node Localization in Wireless Sensor Networks Based on Received Signal Strength Indicator</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Wei ; Liu, Xuming ; Li, Maozhen ; Wang, Zhaoba ; Wang, Cunhua</creator><creatorcontrib>Wang, Wei ; Liu, Xuming ; Li, Maozhen ; Wang, Zhaoba ; Wang, Cunhua</creatorcontrib><description>In order to improve the precision of inside localization and optimize the allocation of node resources in wireless sensor networks (WSNs), an equal-arc trilateral localization algorithm based on received signal strength indicator (RSSI) is proposed from the perspective of increasing measurement precision and bettering beacon nodes layout. The algorithm adopts Kalman filter to filter the data collected from the best communication range, thus the disturbance problem of RSSI value can be tackled easily. By analyzing the changeable relationship between the communication distance and the RSSI, an optimal communication distance can be identified to satisfy the application requirements. In this paper, an equal-arc triangular beacon node layout model is established to ensure that the motion tracks of unknown nodes are always situated within an optimal communication distance to improve the measurement precision. The experimental results show that the proposed work increases the average location accuracy of the equal-arc triangulation layout model by 81%, 54%, and 48%, respectively, compared with the traditional square beacon model, the traditional equilateral triangle beacon model, and the improved equilateral triangle beacon model. In comparison with the traditional triangular layout, the equal-arc layout area coverage is increased by 23%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2920279</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Communication ; equal-arc triangular ; Kalman filtering ; Kalman filters ; Layout ; Layouts ; Localization ; Mathematical model ; Model accuracy ; Nodes ; Optimization ; particle swarm algorithm ; Particle swarm optimization ; Received signal strength indicator ; RSSI ; Signal strength ; Triangles ; Triangulation ; Wireless communication ; Wireless networks ; Wireless sensor networks ; Zigbee</subject><ispartof>IEEE access, 2019, Vol.7, p.73880-73889</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-411d4d7cf7efc0586258911b2419c31fb98e25b91174cb5a35ee147333a3d1b43</citedby><cites>FETCH-LOGICAL-c408t-411d4d7cf7efc0586258911b2419c31fb98e25b91174cb5a35ee147333a3d1b43</cites><orcidid>0000-0001-9474-6214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8727428$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Liu, Xuming</creatorcontrib><creatorcontrib>Li, Maozhen</creatorcontrib><creatorcontrib>Wang, Zhaoba</creatorcontrib><creatorcontrib>Wang, Cunhua</creatorcontrib><title>Optimizing Node Localization in Wireless Sensor Networks Based on Received Signal Strength Indicator</title><title>IEEE access</title><addtitle>Access</addtitle><description>In order to improve the precision of inside localization and optimize the allocation of node resources in wireless sensor networks (WSNs), an equal-arc trilateral localization algorithm based on received signal strength indicator (RSSI) is proposed from the perspective of increasing measurement precision and bettering beacon nodes layout. The algorithm adopts Kalman filter to filter the data collected from the best communication range, thus the disturbance problem of RSSI value can be tackled easily. By analyzing the changeable relationship between the communication distance and the RSSI, an optimal communication distance can be identified to satisfy the application requirements. In this paper, an equal-arc triangular beacon node layout model is established to ensure that the motion tracks of unknown nodes are always situated within an optimal communication distance to improve the measurement precision. The experimental results show that the proposed work increases the average location accuracy of the equal-arc triangulation layout model by 81%, 54%, and 48%, respectively, compared with the traditional square beacon model, the traditional equilateral triangle beacon model, and the improved equilateral triangle beacon model. In comparison with the traditional triangular layout, the equal-arc layout area coverage is increased by 23%.</description><subject>Algorithms</subject><subject>Communication</subject><subject>equal-arc triangular</subject><subject>Kalman filtering</subject><subject>Kalman filters</subject><subject>Layout</subject><subject>Layouts</subject><subject>Localization</subject><subject>Mathematical model</subject><subject>Model accuracy</subject><subject>Nodes</subject><subject>Optimization</subject><subject>particle swarm algorithm</subject><subject>Particle swarm optimization</subject><subject>Received signal strength indicator</subject><subject>RSSI</subject><subject>Signal strength</subject><subject>Triangles</subject><subject>Triangulation</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><subject>Zigbee</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LHDEUHUoFxfoLfAn0ebf53CSPdrF1YVFwFB9DPu5ssx0n2yS26K9v7Ij0vtzD4ZxzuZyuOyd4SQjWXy7W68u-X1JM9JJqiqnUH7oTSlZ6wQRbffwPH3dnpexxG9UoIU-6cHOo8TG-xGmHrlMAtE3ejvHF1pgmFCf0EDOMUArqYSopo2uof1L-WdBXWyCgJroFD_F3w33cTXZEfc0w7eoPtJlC9Lam_Kk7GuxY4Oxtn3b33y7v1leL7c33zfpiu_Acq7rghAQepB8kDB4LtaJCaUIc5UR7RganFVDhGiW5d8IyAUC4ZIxZFojj7LTbzLkh2b055Pho87NJNpp_RMo7Y3ONfgQjVlqKAHrwQXLgxGGFcXCDA-qUI6RlfZ6zDjn9eoJSzT495fZfMZQLIbQWDDcVm1U-p1IyDO9XCTav7Zi5HfPajnlrp7nOZ1cEgHeHklRyqthfofGLLg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wang, Wei</creator><creator>Liu, Xuming</creator><creator>Li, Maozhen</creator><creator>Wang, Zhaoba</creator><creator>Wang, Cunhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9474-6214</orcidid></search><sort><creationdate>2019</creationdate><title>Optimizing Node Localization in Wireless Sensor Networks Based on Received Signal Strength Indicator</title><author>Wang, Wei ; Liu, Xuming ; Li, Maozhen ; Wang, Zhaoba ; Wang, Cunhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-411d4d7cf7efc0586258911b2419c31fb98e25b91174cb5a35ee147333a3d1b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Communication</topic><topic>equal-arc triangular</topic><topic>Kalman filtering</topic><topic>Kalman filters</topic><topic>Layout</topic><topic>Layouts</topic><topic>Localization</topic><topic>Mathematical model</topic><topic>Model accuracy</topic><topic>Nodes</topic><topic>Optimization</topic><topic>particle swarm algorithm</topic><topic>Particle swarm optimization</topic><topic>Received signal strength indicator</topic><topic>RSSI</topic><topic>Signal strength</topic><topic>Triangles</topic><topic>Triangulation</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><topic>Zigbee</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Liu, Xuming</creatorcontrib><creatorcontrib>Li, Maozhen</creatorcontrib><creatorcontrib>Wang, Zhaoba</creatorcontrib><creatorcontrib>Wang, Cunhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wei</au><au>Liu, Xuming</au><au>Li, Maozhen</au><au>Wang, Zhaoba</au><au>Wang, Cunhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Node Localization in Wireless Sensor Networks Based on Received Signal Strength Indicator</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>73880</spage><epage>73889</epage><pages>73880-73889</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In order to improve the precision of inside localization and optimize the allocation of node resources in wireless sensor networks (WSNs), an equal-arc trilateral localization algorithm based on received signal strength indicator (RSSI) is proposed from the perspective of increasing measurement precision and bettering beacon nodes layout. The algorithm adopts Kalman filter to filter the data collected from the best communication range, thus the disturbance problem of RSSI value can be tackled easily. By analyzing the changeable relationship between the communication distance and the RSSI, an optimal communication distance can be identified to satisfy the application requirements. In this paper, an equal-arc triangular beacon node layout model is established to ensure that the motion tracks of unknown nodes are always situated within an optimal communication distance to improve the measurement precision. The experimental results show that the proposed work increases the average location accuracy of the equal-arc triangulation layout model by 81%, 54%, and 48%, respectively, compared with the traditional square beacon model, the traditional equilateral triangle beacon model, and the improved equilateral triangle beacon model. In comparison with the traditional triangular layout, the equal-arc layout area coverage is increased by 23%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2920279</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9474-6214</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.73880-73889
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8727428
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Communication
equal-arc triangular
Kalman filtering
Kalman filters
Layout
Layouts
Localization
Mathematical model
Model accuracy
Nodes
Optimization
particle swarm algorithm
Particle swarm optimization
Received signal strength indicator
RSSI
Signal strength
Triangles
Triangulation
Wireless communication
Wireless networks
Wireless sensor networks
Zigbee
title Optimizing Node Localization in Wireless Sensor Networks Based on Received Signal Strength Indicator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Node%20Localization%20in%20Wireless%20Sensor%20Networks%20Based%20on%20Received%20Signal%20Strength%20Indicator&rft.jtitle=IEEE%20access&rft.au=Wang,%20Wei&rft.date=2019&rft.volume=7&rft.spage=73880&rft.epage=73889&rft.pages=73880-73889&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2920279&rft_dat=%3Cproquest_ieee_%3E2455599530%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455599530&rft_id=info:pmid/&rft_ieee_id=8727428&rft_doaj_id=oai_doaj_org_article_56975de9fcd74e41b0800dbfbe2b8b11&rfr_iscdi=true