Keyphrase Enhanced Diverse Beam Search: A Content-Introducing Approach to Neural Text Generation

Neural text generation has been a challenging task, among which the text representation and the beam search are crucial techniques. By improving these techniques, we propose a novel model to generate texts of higher quality in this paper. First, we leverage the global and local contextual features b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.72716-72725
Hauptverfasser: Chen, Xuewen, Li, Jinlong, Wang, Haihan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72725
container_issue
container_start_page 72716
container_title IEEE access
container_volume 7
creator Chen, Xuewen
Li, Jinlong
Wang, Haihan
description Neural text generation has been a challenging task, among which the text representation and the beam search are crucial techniques. By improving these techniques, we propose a novel model to generate texts of higher quality in this paper. First, we leverage the global and local contextual features by combining the structure of both the recurrent neural network (RNN) and convolutional neural network (CNN) to learn a joint representation for the source text. Next, we introduce a modified diverse beam search to foster the diversity in the generated sentences during decoding, and then we rank these sentences according to its saliency score which measures the co-occurrence of keyphrases with the source text. Such a ranking mechanism promotes the semantical relevance between the source text and the generated sentence. To evaluate our model, we conduct extensive experiments on two neural generation tasks, including document summarization and headline generation. The results on both tasks show that our proposed model contributes to promising improvement in performance compared with the state-of-the-art baselines.
doi_str_mv 10.1109/ACCESS.2019.2919974
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8726288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8726288</ieee_id><doaj_id>oai_doaj_org_article_65c3fd18b05f40e9a7f0dab1d5dc8f3f</doaj_id><sourcerecordid>2455599139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-616db841cd58b10b1c15a1429b041532fd45770310d4e4cd94b413d49dbb297f3</originalsourceid><addsrcrecordid>eNpNUU1vEzEQXSGQqEp_QS-WOG_w-GPX7i1dQomo4JByNv6YbTZK7eB1KvLv2bBVxVxm9PTemxm9qroGugCg-tOy61abzYJR0AumQetWvKkuGDS65pI3b_-b31dX47ijU6kJku1F9esbng7bbEckq7i10WMgn4dnzBNwi_aJbNBmv70hS9KlWDCWeh1LTuHoh_hIlodDTtZvSUnkOx6z3ZMH_FPIHUbMtgwpfqje9XY_4tVLv6x-flk9dF_r-x936255X3tBVakbaIJTAnyQygF14EFaEEw7KkBy1gch25ZyoEGg8EELJ4AHoYNzTLc9v6zWs29IdmcOeXiy-WSSHcw_IOVHY3MZ_B5NIz3vAyhHZS8oatv2NFgHQQaven72-jh7Tc_9PuJYzC4dc5zON0xIKbUGricWn1k-p3HM2L9uBWrOyZg5GXNOxrwkM6muZ9WAiK8K1bKGKcX_AghHiUM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455599139</pqid></control><display><type>article</type><title>Keyphrase Enhanced Diverse Beam Search: A Content-Introducing Approach to Neural Text Generation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Xuewen ; Li, Jinlong ; Wang, Haihan</creator><creatorcontrib>Chen, Xuewen ; Li, Jinlong ; Wang, Haihan</creatorcontrib><description>Neural text generation has been a challenging task, among which the text representation and the beam search are crucial techniques. By improving these techniques, we propose a novel model to generate texts of higher quality in this paper. First, we leverage the global and local contextual features by combining the structure of both the recurrent neural network (RNN) and convolutional neural network (CNN) to learn a joint representation for the source text. Next, we introduce a modified diverse beam search to foster the diversity in the generated sentences during decoding, and then we rank these sentences according to its saliency score which measures the co-occurrence of keyphrases with the source text. Such a ranking mechanism promotes the semantical relevance between the source text and the generated sentence. To evaluate our model, we conduct extensive experiments on two neural generation tasks, including document summarization and headline generation. The results on both tasks show that our proposed model contributes to promising improvement in performance compared with the state-of-the-art baselines.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2919974</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; beam search ; Context modeling ; Decoding ; Diversity reception ; keyphrase ; Mathematical model ; Neural networks ; Recurrent neural networks ; Representations ; Searching ; sequence to sequence ; Task analysis ; Text generation</subject><ispartof>IEEE access, 2019, Vol.7, p.72716-72725</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-616db841cd58b10b1c15a1429b041532fd45770310d4e4cd94b413d49dbb297f3</citedby><cites>FETCH-LOGICAL-c408t-616db841cd58b10b1c15a1429b041532fd45770310d4e4cd94b413d49dbb297f3</cites><orcidid>0000-0002-9058-8332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8726288$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Chen, Xuewen</creatorcontrib><creatorcontrib>Li, Jinlong</creatorcontrib><creatorcontrib>Wang, Haihan</creatorcontrib><title>Keyphrase Enhanced Diverse Beam Search: A Content-Introducing Approach to Neural Text Generation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Neural text generation has been a challenging task, among which the text representation and the beam search are crucial techniques. By improving these techniques, we propose a novel model to generate texts of higher quality in this paper. First, we leverage the global and local contextual features by combining the structure of both the recurrent neural network (RNN) and convolutional neural network (CNN) to learn a joint representation for the source text. Next, we introduce a modified diverse beam search to foster the diversity in the generated sentences during decoding, and then we rank these sentences according to its saliency score which measures the co-occurrence of keyphrases with the source text. Such a ranking mechanism promotes the semantical relevance between the source text and the generated sentence. To evaluate our model, we conduct extensive experiments on two neural generation tasks, including document summarization and headline generation. The results on both tasks show that our proposed model contributes to promising improvement in performance compared with the state-of-the-art baselines.</description><subject>Artificial neural networks</subject><subject>beam search</subject><subject>Context modeling</subject><subject>Decoding</subject><subject>Diversity reception</subject><subject>keyphrase</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><subject>Representations</subject><subject>Searching</subject><subject>sequence to sequence</subject><subject>Task analysis</subject><subject>Text generation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1vEzEQXSGQqEp_QS-WOG_w-GPX7i1dQomo4JByNv6YbTZK7eB1KvLv2bBVxVxm9PTemxm9qroGugCg-tOy61abzYJR0AumQetWvKkuGDS65pI3b_-b31dX47ijU6kJku1F9esbng7bbEckq7i10WMgn4dnzBNwi_aJbNBmv70hS9KlWDCWeh1LTuHoh_hIlodDTtZvSUnkOx6z3ZMH_FPIHUbMtgwpfqje9XY_4tVLv6x-flk9dF_r-x936255X3tBVakbaIJTAnyQygF14EFaEEw7KkBy1gch25ZyoEGg8EELJ4AHoYNzTLc9v6zWs29IdmcOeXiy-WSSHcw_IOVHY3MZ_B5NIz3vAyhHZS8oatv2NFgHQQaven72-jh7Tc_9PuJYzC4dc5zON0xIKbUGricWn1k-p3HM2L9uBWrOyZg5GXNOxrwkM6muZ9WAiK8K1bKGKcX_AghHiUM</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Chen, Xuewen</creator><creator>Li, Jinlong</creator><creator>Wang, Haihan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9058-8332</orcidid></search><sort><creationdate>2019</creationdate><title>Keyphrase Enhanced Diverse Beam Search: A Content-Introducing Approach to Neural Text Generation</title><author>Chen, Xuewen ; Li, Jinlong ; Wang, Haihan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-616db841cd58b10b1c15a1429b041532fd45770310d4e4cd94b413d49dbb297f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>beam search</topic><topic>Context modeling</topic><topic>Decoding</topic><topic>Diversity reception</topic><topic>keyphrase</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><topic>Representations</topic><topic>Searching</topic><topic>sequence to sequence</topic><topic>Task analysis</topic><topic>Text generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xuewen</creatorcontrib><creatorcontrib>Li, Jinlong</creatorcontrib><creatorcontrib>Wang, Haihan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xuewen</au><au>Li, Jinlong</au><au>Wang, Haihan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Keyphrase Enhanced Diverse Beam Search: A Content-Introducing Approach to Neural Text Generation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>72716</spage><epage>72725</epage><pages>72716-72725</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Neural text generation has been a challenging task, among which the text representation and the beam search are crucial techniques. By improving these techniques, we propose a novel model to generate texts of higher quality in this paper. First, we leverage the global and local contextual features by combining the structure of both the recurrent neural network (RNN) and convolutional neural network (CNN) to learn a joint representation for the source text. Next, we introduce a modified diverse beam search to foster the diversity in the generated sentences during decoding, and then we rank these sentences according to its saliency score which measures the co-occurrence of keyphrases with the source text. Such a ranking mechanism promotes the semantical relevance between the source text and the generated sentence. To evaluate our model, we conduct extensive experiments on two neural generation tasks, including document summarization and headline generation. The results on both tasks show that our proposed model contributes to promising improvement in performance compared with the state-of-the-art baselines.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2919974</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9058-8332</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.72716-72725
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8726288
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
beam search
Context modeling
Decoding
Diversity reception
keyphrase
Mathematical model
Neural networks
Recurrent neural networks
Representations
Searching
sequence to sequence
Task analysis
Text generation
title Keyphrase Enhanced Diverse Beam Search: A Content-Introducing Approach to Neural Text Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Keyphrase%20Enhanced%20Diverse%20Beam%20Search:%20A%20Content-Introducing%20Approach%20to%20Neural%20Text%20Generation&rft.jtitle=IEEE%20access&rft.au=Chen,%20Xuewen&rft.date=2019&rft.volume=7&rft.spage=72716&rft.epage=72725&rft.pages=72716-72725&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2919974&rft_dat=%3Cproquest_ieee_%3E2455599139%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455599139&rft_id=info:pmid/&rft_ieee_id=8726288&rft_doaj_id=oai_doaj_org_article_65c3fd18b05f40e9a7f0dab1d5dc8f3f&rfr_iscdi=true