Keyphrase Enhanced Diverse Beam Search: A Content-Introducing Approach to Neural Text Generation
Neural text generation has been a challenging task, among which the text representation and the beam search are crucial techniques. By improving these techniques, we propose a novel model to generate texts of higher quality in this paper. First, we leverage the global and local contextual features b...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.72716-72725 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72725 |
---|---|
container_issue | |
container_start_page | 72716 |
container_title | IEEE access |
container_volume | 7 |
creator | Chen, Xuewen Li, Jinlong Wang, Haihan |
description | Neural text generation has been a challenging task, among which the text representation and the beam search are crucial techniques. By improving these techniques, we propose a novel model to generate texts of higher quality in this paper. First, we leverage the global and local contextual features by combining the structure of both the recurrent neural network (RNN) and convolutional neural network (CNN) to learn a joint representation for the source text. Next, we introduce a modified diverse beam search to foster the diversity in the generated sentences during decoding, and then we rank these sentences according to its saliency score which measures the co-occurrence of keyphrases with the source text. Such a ranking mechanism promotes the semantical relevance between the source text and the generated sentence. To evaluate our model, we conduct extensive experiments on two neural generation tasks, including document summarization and headline generation. The results on both tasks show that our proposed model contributes to promising improvement in performance compared with the state-of-the-art baselines. |
doi_str_mv | 10.1109/ACCESS.2019.2919974 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8726288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8726288</ieee_id><doaj_id>oai_doaj_org_article_65c3fd18b05f40e9a7f0dab1d5dc8f3f</doaj_id><sourcerecordid>2455599139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-616db841cd58b10b1c15a1429b041532fd45770310d4e4cd94b413d49dbb297f3</originalsourceid><addsrcrecordid>eNpNUU1vEzEQXSGQqEp_QS-WOG_w-GPX7i1dQomo4JByNv6YbTZK7eB1KvLv2bBVxVxm9PTemxm9qroGugCg-tOy61abzYJR0AumQetWvKkuGDS65pI3b_-b31dX47ijU6kJku1F9esbng7bbEckq7i10WMgn4dnzBNwi_aJbNBmv70hS9KlWDCWeh1LTuHoh_hIlodDTtZvSUnkOx6z3ZMH_FPIHUbMtgwpfqje9XY_4tVLv6x-flk9dF_r-x936255X3tBVakbaIJTAnyQygF14EFaEEw7KkBy1gch25ZyoEGg8EELJ4AHoYNzTLc9v6zWs29IdmcOeXiy-WSSHcw_IOVHY3MZ_B5NIz3vAyhHZS8oatv2NFgHQQaven72-jh7Tc_9PuJYzC4dc5zON0xIKbUGricWn1k-p3HM2L9uBWrOyZg5GXNOxrwkM6muZ9WAiK8K1bKGKcX_AghHiUM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455599139</pqid></control><display><type>article</type><title>Keyphrase Enhanced Diverse Beam Search: A Content-Introducing Approach to Neural Text Generation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Xuewen ; Li, Jinlong ; Wang, Haihan</creator><creatorcontrib>Chen, Xuewen ; Li, Jinlong ; Wang, Haihan</creatorcontrib><description>Neural text generation has been a challenging task, among which the text representation and the beam search are crucial techniques. By improving these techniques, we propose a novel model to generate texts of higher quality in this paper. First, we leverage the global and local contextual features by combining the structure of both the recurrent neural network (RNN) and convolutional neural network (CNN) to learn a joint representation for the source text. Next, we introduce a modified diverse beam search to foster the diversity in the generated sentences during decoding, and then we rank these sentences according to its saliency score which measures the co-occurrence of keyphrases with the source text. Such a ranking mechanism promotes the semantical relevance between the source text and the generated sentence. To evaluate our model, we conduct extensive experiments on two neural generation tasks, including document summarization and headline generation. The results on both tasks show that our proposed model contributes to promising improvement in performance compared with the state-of-the-art baselines.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2919974</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; beam search ; Context modeling ; Decoding ; Diversity reception ; keyphrase ; Mathematical model ; Neural networks ; Recurrent neural networks ; Representations ; Searching ; sequence to sequence ; Task analysis ; Text generation</subject><ispartof>IEEE access, 2019, Vol.7, p.72716-72725</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-616db841cd58b10b1c15a1429b041532fd45770310d4e4cd94b413d49dbb297f3</citedby><cites>FETCH-LOGICAL-c408t-616db841cd58b10b1c15a1429b041532fd45770310d4e4cd94b413d49dbb297f3</cites><orcidid>0000-0002-9058-8332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8726288$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Chen, Xuewen</creatorcontrib><creatorcontrib>Li, Jinlong</creatorcontrib><creatorcontrib>Wang, Haihan</creatorcontrib><title>Keyphrase Enhanced Diverse Beam Search: A Content-Introducing Approach to Neural Text Generation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Neural text generation has been a challenging task, among which the text representation and the beam search are crucial techniques. By improving these techniques, we propose a novel model to generate texts of higher quality in this paper. First, we leverage the global and local contextual features by combining the structure of both the recurrent neural network (RNN) and convolutional neural network (CNN) to learn a joint representation for the source text. Next, we introduce a modified diverse beam search to foster the diversity in the generated sentences during decoding, and then we rank these sentences according to its saliency score which measures the co-occurrence of keyphrases with the source text. Such a ranking mechanism promotes the semantical relevance between the source text and the generated sentence. To evaluate our model, we conduct extensive experiments on two neural generation tasks, including document summarization and headline generation. The results on both tasks show that our proposed model contributes to promising improvement in performance compared with the state-of-the-art baselines.</description><subject>Artificial neural networks</subject><subject>beam search</subject><subject>Context modeling</subject><subject>Decoding</subject><subject>Diversity reception</subject><subject>keyphrase</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><subject>Representations</subject><subject>Searching</subject><subject>sequence to sequence</subject><subject>Task analysis</subject><subject>Text generation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1vEzEQXSGQqEp_QS-WOG_w-GPX7i1dQomo4JByNv6YbTZK7eB1KvLv2bBVxVxm9PTemxm9qroGugCg-tOy61abzYJR0AumQetWvKkuGDS65pI3b_-b31dX47ijU6kJku1F9esbng7bbEckq7i10WMgn4dnzBNwi_aJbNBmv70hS9KlWDCWeh1LTuHoh_hIlodDTtZvSUnkOx6z3ZMH_FPIHUbMtgwpfqje9XY_4tVLv6x-flk9dF_r-x936255X3tBVakbaIJTAnyQygF14EFaEEw7KkBy1gch25ZyoEGg8EELJ4AHoYNzTLc9v6zWs29IdmcOeXiy-WSSHcw_IOVHY3MZ_B5NIz3vAyhHZS8oatv2NFgHQQaven72-jh7Tc_9PuJYzC4dc5zON0xIKbUGricWn1k-p3HM2L9uBWrOyZg5GXNOxrwkM6muZ9WAiK8K1bKGKcX_AghHiUM</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Chen, Xuewen</creator><creator>Li, Jinlong</creator><creator>Wang, Haihan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9058-8332</orcidid></search><sort><creationdate>2019</creationdate><title>Keyphrase Enhanced Diverse Beam Search: A Content-Introducing Approach to Neural Text Generation</title><author>Chen, Xuewen ; Li, Jinlong ; Wang, Haihan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-616db841cd58b10b1c15a1429b041532fd45770310d4e4cd94b413d49dbb297f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>beam search</topic><topic>Context modeling</topic><topic>Decoding</topic><topic>Diversity reception</topic><topic>keyphrase</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><topic>Representations</topic><topic>Searching</topic><topic>sequence to sequence</topic><topic>Task analysis</topic><topic>Text generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xuewen</creatorcontrib><creatorcontrib>Li, Jinlong</creatorcontrib><creatorcontrib>Wang, Haihan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xuewen</au><au>Li, Jinlong</au><au>Wang, Haihan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Keyphrase Enhanced Diverse Beam Search: A Content-Introducing Approach to Neural Text Generation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>72716</spage><epage>72725</epage><pages>72716-72725</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Neural text generation has been a challenging task, among which the text representation and the beam search are crucial techniques. By improving these techniques, we propose a novel model to generate texts of higher quality in this paper. First, we leverage the global and local contextual features by combining the structure of both the recurrent neural network (RNN) and convolutional neural network (CNN) to learn a joint representation for the source text. Next, we introduce a modified diverse beam search to foster the diversity in the generated sentences during decoding, and then we rank these sentences according to its saliency score which measures the co-occurrence of keyphrases with the source text. Such a ranking mechanism promotes the semantical relevance between the source text and the generated sentence. To evaluate our model, we conduct extensive experiments on two neural generation tasks, including document summarization and headline generation. The results on both tasks show that our proposed model contributes to promising improvement in performance compared with the state-of-the-art baselines.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2919974</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9058-8332</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.72716-72725 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8726288 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks beam search Context modeling Decoding Diversity reception keyphrase Mathematical model Neural networks Recurrent neural networks Representations Searching sequence to sequence Task analysis Text generation |
title | Keyphrase Enhanced Diverse Beam Search: A Content-Introducing Approach to Neural Text Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Keyphrase%20Enhanced%20Diverse%20Beam%20Search:%20A%20Content-Introducing%20Approach%20to%20Neural%20Text%20Generation&rft.jtitle=IEEE%20access&rft.au=Chen,%20Xuewen&rft.date=2019&rft.volume=7&rft.spage=72716&rft.epage=72725&rft.pages=72716-72725&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2919974&rft_dat=%3Cproquest_ieee_%3E2455599139%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455599139&rft_id=info:pmid/&rft_ieee_id=8726288&rft_doaj_id=oai_doaj_org_article_65c3fd18b05f40e9a7f0dab1d5dc8f3f&rfr_iscdi=true |