Design and Experimental Characterization of a Shoulder-Elbow Exoskeleton With Compliant Joints for Post-Stroke Rehabilitation
This paper presents the design and experimental characterization of a 4-degree-of-freedom shoulder-elbow exoskeleton, NeuroExos Shoulder-elbow Module (NESM), for upper-limb neurorehabilitation and treatment of spasticity. The NESM employs a self-aligning mechanism based on passive rotational joints...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2019-08, Vol.24 (4), p.1485-1496 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1496 |
---|---|
container_issue | 4 |
container_start_page | 1485 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 24 |
creator | Trigili, Emilio Crea, Simona Moise, Matteo Baldoni, Andrea Cempini, Marco Ercolini, Giorgia Marconi, Dario Posteraro, Federico Carrozza, Maria Chiara Vitiello, Nicola |
description | This paper presents the design and experimental characterization of a 4-degree-of-freedom shoulder-elbow exoskeleton, NeuroExos Shoulder-elbow Module (NESM), for upper-limb neurorehabilitation and treatment of spasticity. The NESM employs a self-aligning mechanism based on passive rotational joints to smoothly self-align the robot's rotational axes to the user's ones. Compliant yet high-torque series-elastic actuators allow the NESM to safely interact with the user, particularly in response to sudden unpredicted movements, such as those caused by spastic contractions. The NESM control system provides a variety of rehabilitation exercises, enabling the customization of therapy to patients exhibiting a range of movement capabilities. Available exercises include passive mobilization, active-assisted, active-resisted, and active-disturbed training modes. The experimental characterization of two NESM actuation units demonstrated position and torque control performance suitable for use in neurorehabilitation applications, including up to 7 Hz of bandwidth in torque control. An algorithm for online detection of spastic contractions or sudden object collisions has been implemented and tested as well, with results suggesting that the current system can ensure safe interaction with patients. |
doi_str_mv | 10.1109/TMECH.2019.2907465 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8721566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8721566</ieee_id><sourcerecordid>2275586066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-f42a78196dd3f2a2804472dc91e0b35e727524b28635e0a7ada18fc8a2b9ffb53</originalsourceid><addsrcrecordid>eNo9kF1PwyAUhonRxDn9A3pD4nUnUNrSS1Or08xo3IzeEdqCZevKBBY_Ev-7zC1eAee8z0vyAHCK0QhjlF_M7stiPCII5yOSo4ymyR4Y4JziCGH6uh_uiMURpXFyCI6cmyOEKEZ4AH6upNNvPRR9A8vPlbR6KXsvOli0worah8G38Nr00Cgo4LQ1666RNiq7ynwEwriF7KQP-xftW1iY5arTovfwzujeO6iMhY_G-WjqrVlI-CRbUelO-7_SY3CgROfkye4cgufrclaMo8nDzW1xOYnqOM59pCgRGcN52jSxIoIwRGlGmjrHElVxIjOSJYRWhKXhgUQmGoGZqpkgVa5UlcRDcL7tXVnzvpbO87lZ2z58yUlgE5aiNA0psk3V1jhnpeKroEPYL44R32jmf5r5RjPfaQ7Q2RbSUsp_gGUEJ6HyFwzrezQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275586066</pqid></control><display><type>article</type><title>Design and Experimental Characterization of a Shoulder-Elbow Exoskeleton With Compliant Joints for Post-Stroke Rehabilitation</title><source>IEEE Xplore</source><creator>Trigili, Emilio ; Crea, Simona ; Moise, Matteo ; Baldoni, Andrea ; Cempini, Marco ; Ercolini, Giorgia ; Marconi, Dario ; Posteraro, Federico ; Carrozza, Maria Chiara ; Vitiello, Nicola</creator><creatorcontrib>Trigili, Emilio ; Crea, Simona ; Moise, Matteo ; Baldoni, Andrea ; Cempini, Marco ; Ercolini, Giorgia ; Marconi, Dario ; Posteraro, Federico ; Carrozza, Maria Chiara ; Vitiello, Nicola</creatorcontrib><description>This paper presents the design and experimental characterization of a 4-degree-of-freedom shoulder-elbow exoskeleton, NeuroExos Shoulder-elbow Module (NESM), for upper-limb neurorehabilitation and treatment of spasticity. The NESM employs a self-aligning mechanism based on passive rotational joints to smoothly self-align the robot's rotational axes to the user's ones. Compliant yet high-torque series-elastic actuators allow the NESM to safely interact with the user, particularly in response to sudden unpredicted movements, such as those caused by spastic contractions. The NESM control system provides a variety of rehabilitation exercises, enabling the customization of therapy to patients exhibiting a range of movement capabilities. Available exercises include passive mobilization, active-assisted, active-resisted, and active-disturbed training modes. The experimental characterization of two NESM actuation units demonstrated position and torque control performance suitable for use in neurorehabilitation applications, including up to 7 Hz of bandwidth in torque control. An algorithm for online detection of spastic contractions or sudden object collisions has been implemented and tested as well, with results suggesting that the current system can ensure safe interaction with patients.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2019.2907465</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuation ; Actuators ; Algorithms ; Axes of rotation ; Elbow ; Exoskeletons ; Kinematics ; Modulus of elasticity ; Pulleys ; Rehabilitation ; Robotic rehabilitation ; Robots ; Self alignment ; series elastic actuator ; Shoulder ; spasticity ; Torque ; upper-limb exoskeleton</subject><ispartof>IEEE/ASME transactions on mechatronics, 2019-08, Vol.24 (4), p.1485-1496</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-f42a78196dd3f2a2804472dc91e0b35e727524b28635e0a7ada18fc8a2b9ffb53</citedby><cites>FETCH-LOGICAL-c339t-f42a78196dd3f2a2804472dc91e0b35e727524b28635e0a7ada18fc8a2b9ffb53</cites><orcidid>0000-0001-9833-4401 ; 0000-0001-8104-319X ; 0000-0002-3725-5694 ; 0000-0002-8696-1907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8721566$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Trigili, Emilio</creatorcontrib><creatorcontrib>Crea, Simona</creatorcontrib><creatorcontrib>Moise, Matteo</creatorcontrib><creatorcontrib>Baldoni, Andrea</creatorcontrib><creatorcontrib>Cempini, Marco</creatorcontrib><creatorcontrib>Ercolini, Giorgia</creatorcontrib><creatorcontrib>Marconi, Dario</creatorcontrib><creatorcontrib>Posteraro, Federico</creatorcontrib><creatorcontrib>Carrozza, Maria Chiara</creatorcontrib><creatorcontrib>Vitiello, Nicola</creatorcontrib><title>Design and Experimental Characterization of a Shoulder-Elbow Exoskeleton With Compliant Joints for Post-Stroke Rehabilitation</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>This paper presents the design and experimental characterization of a 4-degree-of-freedom shoulder-elbow exoskeleton, NeuroExos Shoulder-elbow Module (NESM), for upper-limb neurorehabilitation and treatment of spasticity. The NESM employs a self-aligning mechanism based on passive rotational joints to smoothly self-align the robot's rotational axes to the user's ones. Compliant yet high-torque series-elastic actuators allow the NESM to safely interact with the user, particularly in response to sudden unpredicted movements, such as those caused by spastic contractions. The NESM control system provides a variety of rehabilitation exercises, enabling the customization of therapy to patients exhibiting a range of movement capabilities. Available exercises include passive mobilization, active-assisted, active-resisted, and active-disturbed training modes. The experimental characterization of two NESM actuation units demonstrated position and torque control performance suitable for use in neurorehabilitation applications, including up to 7 Hz of bandwidth in torque control. An algorithm for online detection of spastic contractions or sudden object collisions has been implemented and tested as well, with results suggesting that the current system can ensure safe interaction with patients.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Algorithms</subject><subject>Axes of rotation</subject><subject>Elbow</subject><subject>Exoskeletons</subject><subject>Kinematics</subject><subject>Modulus of elasticity</subject><subject>Pulleys</subject><subject>Rehabilitation</subject><subject>Robotic rehabilitation</subject><subject>Robots</subject><subject>Self alignment</subject><subject>series elastic actuator</subject><subject>Shoulder</subject><subject>spasticity</subject><subject>Torque</subject><subject>upper-limb exoskeleton</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kF1PwyAUhonRxDn9A3pD4nUnUNrSS1Or08xo3IzeEdqCZevKBBY_Ev-7zC1eAee8z0vyAHCK0QhjlF_M7stiPCII5yOSo4ymyR4Y4JziCGH6uh_uiMURpXFyCI6cmyOEKEZ4AH6upNNvPRR9A8vPlbR6KXsvOli0worah8G38Nr00Cgo4LQ1666RNiq7ynwEwriF7KQP-xftW1iY5arTovfwzujeO6iMhY_G-WjqrVlI-CRbUelO-7_SY3CgROfkye4cgufrclaMo8nDzW1xOYnqOM59pCgRGcN52jSxIoIwRGlGmjrHElVxIjOSJYRWhKXhgUQmGoGZqpkgVa5UlcRDcL7tXVnzvpbO87lZ2z58yUlgE5aiNA0psk3V1jhnpeKroEPYL44R32jmf5r5RjPfaQ7Q2RbSUsp_gGUEJ6HyFwzrezQ</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Trigili, Emilio</creator><creator>Crea, Simona</creator><creator>Moise, Matteo</creator><creator>Baldoni, Andrea</creator><creator>Cempini, Marco</creator><creator>Ercolini, Giorgia</creator><creator>Marconi, Dario</creator><creator>Posteraro, Federico</creator><creator>Carrozza, Maria Chiara</creator><creator>Vitiello, Nicola</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9833-4401</orcidid><orcidid>https://orcid.org/0000-0001-8104-319X</orcidid><orcidid>https://orcid.org/0000-0002-3725-5694</orcidid><orcidid>https://orcid.org/0000-0002-8696-1907</orcidid></search><sort><creationdate>20190801</creationdate><title>Design and Experimental Characterization of a Shoulder-Elbow Exoskeleton With Compliant Joints for Post-Stroke Rehabilitation</title><author>Trigili, Emilio ; Crea, Simona ; Moise, Matteo ; Baldoni, Andrea ; Cempini, Marco ; Ercolini, Giorgia ; Marconi, Dario ; Posteraro, Federico ; Carrozza, Maria Chiara ; Vitiello, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-f42a78196dd3f2a2804472dc91e0b35e727524b28635e0a7ada18fc8a2b9ffb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Algorithms</topic><topic>Axes of rotation</topic><topic>Elbow</topic><topic>Exoskeletons</topic><topic>Kinematics</topic><topic>Modulus of elasticity</topic><topic>Pulleys</topic><topic>Rehabilitation</topic><topic>Robotic rehabilitation</topic><topic>Robots</topic><topic>Self alignment</topic><topic>series elastic actuator</topic><topic>Shoulder</topic><topic>spasticity</topic><topic>Torque</topic><topic>upper-limb exoskeleton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trigili, Emilio</creatorcontrib><creatorcontrib>Crea, Simona</creatorcontrib><creatorcontrib>Moise, Matteo</creatorcontrib><creatorcontrib>Baldoni, Andrea</creatorcontrib><creatorcontrib>Cempini, Marco</creatorcontrib><creatorcontrib>Ercolini, Giorgia</creatorcontrib><creatorcontrib>Marconi, Dario</creatorcontrib><creatorcontrib>Posteraro, Federico</creatorcontrib><creatorcontrib>Carrozza, Maria Chiara</creatorcontrib><creatorcontrib>Vitiello, Nicola</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trigili, Emilio</au><au>Crea, Simona</au><au>Moise, Matteo</au><au>Baldoni, Andrea</au><au>Cempini, Marco</au><au>Ercolini, Giorgia</au><au>Marconi, Dario</au><au>Posteraro, Federico</au><au>Carrozza, Maria Chiara</au><au>Vitiello, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Experimental Characterization of a Shoulder-Elbow Exoskeleton With Compliant Joints for Post-Stroke Rehabilitation</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>24</volume><issue>4</issue><spage>1485</spage><epage>1496</epage><pages>1485-1496</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>This paper presents the design and experimental characterization of a 4-degree-of-freedom shoulder-elbow exoskeleton, NeuroExos Shoulder-elbow Module (NESM), for upper-limb neurorehabilitation and treatment of spasticity. The NESM employs a self-aligning mechanism based on passive rotational joints to smoothly self-align the robot's rotational axes to the user's ones. Compliant yet high-torque series-elastic actuators allow the NESM to safely interact with the user, particularly in response to sudden unpredicted movements, such as those caused by spastic contractions. The NESM control system provides a variety of rehabilitation exercises, enabling the customization of therapy to patients exhibiting a range of movement capabilities. Available exercises include passive mobilization, active-assisted, active-resisted, and active-disturbed training modes. The experimental characterization of two NESM actuation units demonstrated position and torque control performance suitable for use in neurorehabilitation applications, including up to 7 Hz of bandwidth in torque control. An algorithm for online detection of spastic contractions or sudden object collisions has been implemented and tested as well, with results suggesting that the current system can ensure safe interaction with patients.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2019.2907465</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9833-4401</orcidid><orcidid>https://orcid.org/0000-0001-8104-319X</orcidid><orcidid>https://orcid.org/0000-0002-3725-5694</orcidid><orcidid>https://orcid.org/0000-0002-8696-1907</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2019-08, Vol.24 (4), p.1485-1496 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_ieee_primary_8721566 |
source | IEEE Xplore |
subjects | Actuation Actuators Algorithms Axes of rotation Elbow Exoskeletons Kinematics Modulus of elasticity Pulleys Rehabilitation Robotic rehabilitation Robots Self alignment series elastic actuator Shoulder spasticity Torque upper-limb exoskeleton |
title | Design and Experimental Characterization of a Shoulder-Elbow Exoskeleton With Compliant Joints for Post-Stroke Rehabilitation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Experimental%20Characterization%20of%20a%20Shoulder-Elbow%20Exoskeleton%20With%20Compliant%20Joints%20for%20Post-Stroke%20Rehabilitation&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Trigili,%20Emilio&rft.date=2019-08-01&rft.volume=24&rft.issue=4&rft.spage=1485&rft.epage=1496&rft.pages=1485-1496&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2019.2907465&rft_dat=%3Cproquest_ieee_%3E2275586066%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275586066&rft_id=info:pmid/&rft_ieee_id=8721566&rfr_iscdi=true |