Contextualized Spatial-Temporal Network for Taxi Origin-Destination Demand Prediction
Taxi demand prediction has recently attracted increasing research interest due to its huge potential application in large-scale intelligent transportation systems. However, most of the previous methods only considered the taxi demand prediction in origin regions, but neglected the modeling of the sp...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2019-10, Vol.20 (10), p.3875-3887 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3887 |
---|---|
container_issue | 10 |
container_start_page | 3875 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 20 |
creator | Liu, Lingbo Qiu, Zhilin Li, Guanbin Wang, Qing Ouyang, Wanli Lin, Liang |
description | Taxi demand prediction has recently attracted increasing research interest due to its huge potential application in large-scale intelligent transportation systems. However, most of the previous methods only considered the taxi demand prediction in origin regions, but neglected the modeling of the specific situation of the destination passengers. We believe it is suboptimal to preallocate the taxi into each region-based solely on the taxi origin demand. In this paper, we present a challenging and worth-exploring task, called taxi origin-destination demand prediction, which aims at predicting the taxi demand between all-region pairs in a future time interval. Its main challenges come from how to effectively capture the diverse contextual information to learn the demand patterns. We address this problem with a novel contextualized spatial-temporal network (CSTN), which consists of three components for the modeling of local spatial context (LSC), temporal evolution context (TEC), and global correlation context (GCC), respectively. First, an LSC module utilizes two convolution neural networks to learn the local spatial dependencies of taxi, demand respectively, from the origin view and the destination view. Second, a TEC module incorporates the local spatial features of taxi demand and the meteorological information to a Convolutional Long Short-term Memory Network (ConvLSTM) for the analysis of taxi demand evolution. Finally, a GCC module is applied to model the correlation between all regions by computing a global correlation feature as a weighted sum of all regional features, with the weights being calculated as the similarity between the corresponding region pairs. The extensive experiments and evaluations on a large-scale dataset well demonstrate the superiority of our CSTN over other compared methods for the taxi origin-destination demand prediction. |
doi_str_mv | 10.1109/TITS.2019.2915525 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8720246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8720246</ieee_id><sourcerecordid>2300331144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-8753d76a0499d585d9de087d9952dc6b436b04a509e9406832d3d48889911a253</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKd_gPhS8Dn15qtNHmXzYzCcsO45ZE0mmV1T0w6nf70tGz6dy-F37r0chG4JpISAeihmxTKlQFRKFRGCijM06lViAJKdDzPlWIGAS3TVttve5YKQEVpNQt25Q7c3lf91Nlk2pvOmwoXbNSGaKnlz3XeIn8kmxKQwB58sov_wNZ66tvN1D4c6mbqdqW3yHp315eBco4uNqVp3c9IxWj0_FZNXPF-8zCaPc1xSqTosc8FsnhngSlkhhVXWgcytUoLaMltzlq2BGwHKKQ6ZZNQyy6WUShFiqGBjdH_c28Twte8_0tuwj3V_UlMGwBghnPcUOVJlDG0b3UY30e9M_NEE9NCeHtrTQ3v61F6fuTtmvHPun5c5Bcoz9gdng2px</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300331144</pqid></control><display><type>article</type><title>Contextualized Spatial-Temporal Network for Taxi Origin-Destination Demand Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Lingbo ; Qiu, Zhilin ; Li, Guanbin ; Wang, Qing ; Ouyang, Wanli ; Lin, Liang</creator><creatorcontrib>Liu, Lingbo ; Qiu, Zhilin ; Li, Guanbin ; Wang, Qing ; Ouyang, Wanli ; Lin, Liang</creatorcontrib><description>Taxi demand prediction has recently attracted increasing research interest due to its huge potential application in large-scale intelligent transportation systems. However, most of the previous methods only considered the taxi demand prediction in origin regions, but neglected the modeling of the specific situation of the destination passengers. We believe it is suboptimal to preallocate the taxi into each region-based solely on the taxi origin demand. In this paper, we present a challenging and worth-exploring task, called taxi origin-destination demand prediction, which aims at predicting the taxi demand between all-region pairs in a future time interval. Its main challenges come from how to effectively capture the diverse contextual information to learn the demand patterns. We address this problem with a novel contextualized spatial-temporal network (CSTN), which consists of three components for the modeling of local spatial context (LSC), temporal evolution context (TEC), and global correlation context (GCC), respectively. First, an LSC module utilizes two convolution neural networks to learn the local spatial dependencies of taxi, demand respectively, from the origin view and the destination view. Second, a TEC module incorporates the local spatial features of taxi demand and the meteorological information to a Convolutional Long Short-term Memory Network (ConvLSTM) for the analysis of taxi demand evolution. Finally, a GCC module is applied to model the correlation between all regions by computing a global correlation feature as a weighted sum of all regional features, with the weights being calculated as the similarity between the corresponding region pairs. The extensive experiments and evaluations on a large-scale dataset well demonstrate the superiority of our CSTN over other compared methods for the taxi origin-destination demand prediction.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2019.2915525</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; context ; Context modeling ; Convolution ; Correlation ; deep learning ; Demand analysis ; Evolution ; Intelligent transportation systems ; Modelling ; Modules ; Neural networks ; origin-destination ; Predictions ; Predictive models ; Public transportation ; Spatial dependencies ; spatial-temporal modeling ; Task analysis ; Taxi demand prediction ; Taxicabs ; Urban areas</subject><ispartof>IEEE transactions on intelligent transportation systems, 2019-10, Vol.20 (10), p.3875-3887</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-8753d76a0499d585d9de087d9952dc6b436b04a509e9406832d3d48889911a253</citedby><cites>FETCH-LOGICAL-c289t-8753d76a0499d585d9de087d9952dc6b436b04a509e9406832d3d48889911a253</cites><orcidid>0000-0001-8179-6685 ; 0000-0002-2367-5110 ; 0000-0003-2248-3755 ; 0000-0002-4805-0926 ; 0000-0002-9163-2761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8720246$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8720246$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Lingbo</creatorcontrib><creatorcontrib>Qiu, Zhilin</creatorcontrib><creatorcontrib>Li, Guanbin</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Ouyang, Wanli</creatorcontrib><creatorcontrib>Lin, Liang</creatorcontrib><title>Contextualized Spatial-Temporal Network for Taxi Origin-Destination Demand Prediction</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Taxi demand prediction has recently attracted increasing research interest due to its huge potential application in large-scale intelligent transportation systems. However, most of the previous methods only considered the taxi demand prediction in origin regions, but neglected the modeling of the specific situation of the destination passengers. We believe it is suboptimal to preallocate the taxi into each region-based solely on the taxi origin demand. In this paper, we present a challenging and worth-exploring task, called taxi origin-destination demand prediction, which aims at predicting the taxi demand between all-region pairs in a future time interval. Its main challenges come from how to effectively capture the diverse contextual information to learn the demand patterns. We address this problem with a novel contextualized spatial-temporal network (CSTN), which consists of three components for the modeling of local spatial context (LSC), temporal evolution context (TEC), and global correlation context (GCC), respectively. First, an LSC module utilizes two convolution neural networks to learn the local spatial dependencies of taxi, demand respectively, from the origin view and the destination view. Second, a TEC module incorporates the local spatial features of taxi demand and the meteorological information to a Convolutional Long Short-term Memory Network (ConvLSTM) for the analysis of taxi demand evolution. Finally, a GCC module is applied to model the correlation between all regions by computing a global correlation feature as a weighted sum of all regional features, with the weights being calculated as the similarity between the corresponding region pairs. The extensive experiments and evaluations on a large-scale dataset well demonstrate the superiority of our CSTN over other compared methods for the taxi origin-destination demand prediction.</description><subject>Artificial neural networks</subject><subject>context</subject><subject>Context modeling</subject><subject>Convolution</subject><subject>Correlation</subject><subject>deep learning</subject><subject>Demand analysis</subject><subject>Evolution</subject><subject>Intelligent transportation systems</subject><subject>Modelling</subject><subject>Modules</subject><subject>Neural networks</subject><subject>origin-destination</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Public transportation</subject><subject>Spatial dependencies</subject><subject>spatial-temporal modeling</subject><subject>Task analysis</subject><subject>Taxi demand prediction</subject><subject>Taxicabs</subject><subject>Urban areas</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOKd_gPhS8Dn15qtNHmXzYzCcsO45ZE0mmV1T0w6nf70tGz6dy-F37r0chG4JpISAeihmxTKlQFRKFRGCijM06lViAJKdDzPlWIGAS3TVttve5YKQEVpNQt25Q7c3lf91Nlk2pvOmwoXbNSGaKnlz3XeIn8kmxKQwB58sov_wNZ66tvN1D4c6mbqdqW3yHp315eBco4uNqVp3c9IxWj0_FZNXPF-8zCaPc1xSqTosc8FsnhngSlkhhVXWgcytUoLaMltzlq2BGwHKKQ6ZZNQyy6WUShFiqGBjdH_c28Twte8_0tuwj3V_UlMGwBghnPcUOVJlDG0b3UY30e9M_NEE9NCeHtrTQ3v61F6fuTtmvHPun5c5Bcoz9gdng2px</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Liu, Lingbo</creator><creator>Qiu, Zhilin</creator><creator>Li, Guanbin</creator><creator>Wang, Qing</creator><creator>Ouyang, Wanli</creator><creator>Lin, Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8179-6685</orcidid><orcidid>https://orcid.org/0000-0002-2367-5110</orcidid><orcidid>https://orcid.org/0000-0003-2248-3755</orcidid><orcidid>https://orcid.org/0000-0002-4805-0926</orcidid><orcidid>https://orcid.org/0000-0002-9163-2761</orcidid></search><sort><creationdate>20191001</creationdate><title>Contextualized Spatial-Temporal Network for Taxi Origin-Destination Demand Prediction</title><author>Liu, Lingbo ; Qiu, Zhilin ; Li, Guanbin ; Wang, Qing ; Ouyang, Wanli ; Lin, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-8753d76a0499d585d9de087d9952dc6b436b04a509e9406832d3d48889911a253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>context</topic><topic>Context modeling</topic><topic>Convolution</topic><topic>Correlation</topic><topic>deep learning</topic><topic>Demand analysis</topic><topic>Evolution</topic><topic>Intelligent transportation systems</topic><topic>Modelling</topic><topic>Modules</topic><topic>Neural networks</topic><topic>origin-destination</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Public transportation</topic><topic>Spatial dependencies</topic><topic>spatial-temporal modeling</topic><topic>Task analysis</topic><topic>Taxi demand prediction</topic><topic>Taxicabs</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lingbo</creatorcontrib><creatorcontrib>Qiu, Zhilin</creatorcontrib><creatorcontrib>Li, Guanbin</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Ouyang, Wanli</creatorcontrib><creatorcontrib>Lin, Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Lingbo</au><au>Qiu, Zhilin</au><au>Li, Guanbin</au><au>Wang, Qing</au><au>Ouyang, Wanli</au><au>Lin, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contextualized Spatial-Temporal Network for Taxi Origin-Destination Demand Prediction</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>20</volume><issue>10</issue><spage>3875</spage><epage>3887</epage><pages>3875-3887</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Taxi demand prediction has recently attracted increasing research interest due to its huge potential application in large-scale intelligent transportation systems. However, most of the previous methods only considered the taxi demand prediction in origin regions, but neglected the modeling of the specific situation of the destination passengers. We believe it is suboptimal to preallocate the taxi into each region-based solely on the taxi origin demand. In this paper, we present a challenging and worth-exploring task, called taxi origin-destination demand prediction, which aims at predicting the taxi demand between all-region pairs in a future time interval. Its main challenges come from how to effectively capture the diverse contextual information to learn the demand patterns. We address this problem with a novel contextualized spatial-temporal network (CSTN), which consists of three components for the modeling of local spatial context (LSC), temporal evolution context (TEC), and global correlation context (GCC), respectively. First, an LSC module utilizes two convolution neural networks to learn the local spatial dependencies of taxi, demand respectively, from the origin view and the destination view. Second, a TEC module incorporates the local spatial features of taxi demand and the meteorological information to a Convolutional Long Short-term Memory Network (ConvLSTM) for the analysis of taxi demand evolution. Finally, a GCC module is applied to model the correlation between all regions by computing a global correlation feature as a weighted sum of all regional features, with the weights being calculated as the similarity between the corresponding region pairs. The extensive experiments and evaluations on a large-scale dataset well demonstrate the superiority of our CSTN over other compared methods for the taxi origin-destination demand prediction.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2019.2915525</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8179-6685</orcidid><orcidid>https://orcid.org/0000-0002-2367-5110</orcidid><orcidid>https://orcid.org/0000-0003-2248-3755</orcidid><orcidid>https://orcid.org/0000-0002-4805-0926</orcidid><orcidid>https://orcid.org/0000-0002-9163-2761</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2019-10, Vol.20 (10), p.3875-3887 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_ieee_primary_8720246 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks context Context modeling Convolution Correlation deep learning Demand analysis Evolution Intelligent transportation systems Modelling Modules Neural networks origin-destination Predictions Predictive models Public transportation Spatial dependencies spatial-temporal modeling Task analysis Taxi demand prediction Taxicabs Urban areas |
title | Contextualized Spatial-Temporal Network for Taxi Origin-Destination Demand Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contextualized%20Spatial-Temporal%20Network%20for%20Taxi%20Origin-Destination%20Demand%20Prediction&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Liu,%20Lingbo&rft.date=2019-10-01&rft.volume=20&rft.issue=10&rft.spage=3875&rft.epage=3887&rft.pages=3875-3887&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2019.2915525&rft_dat=%3Cproquest_RIE%3E2300331144%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300331144&rft_id=info:pmid/&rft_ieee_id=8720246&rfr_iscdi=true |